题目地址

小清新人渣的本愿

[Ynoi2017]由乃的玉米田

所以这两题也就输出不一样而已

题解

这种lxl的题还是没修改操作的题基本就是莫队

分开考虑每个询问

1.减法

\(a-b=x⇒a=b+x\)

用一个\(bitset\),第\(i\)位表示有没有\(i\)这个数

那么查询其实就等价于查询bit&(bit>>x)之后里面有没有1

\(a+b=x\)

2.加法

\(a+b=x\)

设\(p=n-b\)

\(a-p=a-n+b=x-n\)

维护一下另外一个\(bitset\),里面存的是\(n-i\)有没有出现过

查询直接查bit1&(bit2>>(n-x))里面有没有1就好

3.乘法

乘法不好维护

但是直接枚举因数也是可以的,在第一个bitset里面看成对的因数有没有出现过就好

#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <bitset>
using namespace std; inline int read() {
int x = 0, f = 1; char c = getchar();
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') {x = x * 10 + c - '0'; c = getchar();}
return x * f;
} #define N 100010 bitset<N>s1;
bitset<N>s2;
int cnt[N];
int n, m, a[N];
int ans[N], block;
struct ques {
int opt, l, r, x, id;
} q[N]; bool cmp(ques a, ques b) {
if(a.l / block == b.l / block) return a.r < b.r;
else return a.l < b.l;
} void add(int x) {
x = a[x];
cnt[x]++;
if(cnt[x] == 1) s1[x] = s2[n - x] = true;
} void dele(int x) {
x = a[x];
cnt[x]--;
if(!cnt[x]) s1[x] = s2[n - x] = false;
} int main() {
n = read(); m = read();
for(int i = 1; i <= n; i ++) a[i] = read();
block = n / sqrt(m);
for(int i = 1; i <= m; i ++) {
q[i] = (ques) {read(), read(), read(), read(), i};
}
sort(q + 1, q + m + 1, cmp);
int l = 1, r = 0;
for(int i = 1; i <= m; i ++) {
int ql = q[i].l, qr = q[i].r, opt = q[i].opt, x = q[i].x;
while(l < ql) dele(l++);
while(l > ql) add(--l);
while(r < qr) add(++r);
while(r > qr) dele(r--);
if(opt == 1) {
ans[q[i].id] = (s1 & (s1 >> x)).any();
}
if(opt == 2) {
ans[q[i].id] = (s1 & (s2 >> (n - x))).any();
}
if(opt == 3) {
for(int k = 1; k * k <= x; k ++) {
if(x % k == 0) {
if(s1[k] && s1[x / k]) {
ans[q[i].id] = 1;
break;
}
}
}
}
}
for(int i = 1; i <= m; i ++) {
puts(ans[i] ? "hana" : "bi");
}
return 0;
}

LuoguP3674 小清新人渣的本愿 && BZOJ4810: [Ynoi2017]由乃的玉米田的更多相关文章

  1. P3674 小清新人渣的本愿

    P3674 小清新人渣的本愿 一道妙不可言的题啊,,, 一看就知道是个莫队 考虑求答案 1号操作就是个大bitset,动态维护当前的bitset \(S\),把能取哪些值都搞出来,只要\(S\ and ...

  2. 【洛谷3674】小清新人渣的本愿(莫队,bitset)

    [洛谷3674]小清新人渣的本愿(莫队,bitset) 题面 洛谷,自己去看去,太长了 题解 很显然的莫队. 但是怎么查询那几个询问. 对于询问乘积,显然可以暴力枚举因数(反正加起来也是\(O(n\s ...

  3. bzoj4810 [Ynoi2017]由乃的玉米田 bitset优化+暴力+莫队

    [Ynoi2017]由乃的玉米田 Time Limit: 30 Sec  Memory Limit: 256 MBSubmit: 917  Solved: 447[Submit][Status][Di ...

  4. [Luogu3674]小清新人渣的本愿

    luogu 题意 给你一个序列a,长度为n,有m次操作,每次询问一个区间是否可以选出两个数它们的差为x,或者询问一个区间是否可以选出两个数它们的和为x,或者询问一个区间是否可以选出两个数它们的乘积为x ...

  5. 洛谷 P3674 小清新人渣的本愿 [莫队 bitset]

    传送门 题意: 给你一个序列a,长度为n,有Q次操作,每次询问一个区间是否可以选出两个数它们的差为x,或者询问一个区间是否可以选出两个数它们的和为x,或者询问一个区间是否可以选出两个数它们的乘积为x ...

  6. [Luogu 3674]小清新人渣的本愿

    Description 题库链接 给你一个序列 \(A\) ,长度为 \(n\) ,有 \(m\) 次操作,每次询问一个区间是否可以 选出两个数它们的差为 \(x\) : 选出两个数它们的和为 \(x ...

  7. 【题解】Luogu P3674 小清新人渣的本愿

    原题传送门 这题还算简单(我记得我刚学oi时就来写这题,然后暴力都爆零了) 看见无修改,那么这题应该是莫队 维护两个bitset,第二个是第一个的反串,bitset内维护每个数字是否出现过 第一种操作 ...

  8. luogu3674 小清新人渣的本愿 (bitset+莫队)

    对于加减,用bitset维护当前每个数有没有 对于乘,暴力枚举约数 然后莫队 复杂度$O(m(\sqrt{n}+\frac{c}{64}))$ #include<bits/stdc++.h> ...

  9. 洛谷P3674 小清新人渣的本愿

    题意:多次询问,区间内是否存在两个数,使得它们的和为x,差为x,积为x. n,m,V <= 100000 解: 毒瘤bitset...... 假如我们有询问区间的一个桶,那么我们就可以做到O(n ...

随机推荐

  1. Java集合-----Map详解

          Map与Collection并列存在.用于保存具有映射关系的数据:Key-Value      Map 中的 key 和  value 都可以是任何引用类型的数据      Map 中的 ...

  2. uvalive 4848 Tour Belt

    题意: 一个KTO被定义为一个特殊的连通块,这个连通块满足一个要求,这个连通块中的最短的边大于 与这个连通相连的不属于这个连通块的边中的最大值. 给出一个图,统计KTO里面的点有多少个.(一个点可以属 ...

  3. 【Elasticsearch学习之三】Elasticsearch 搜索引擎案例

    环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk8 elasticsearch-2.2.0 第一步:获取数据主流 ...

  4. 多线程(threading)示例

    一.多线程简单示例 import threading,time print('第一线程(默认):程序开始啦!') def takeANap(): time.sleep(5) print('第二线程:5 ...

  5. js三目学习

    <script> var n=1; n>1?document.write('大于1哦'):document.write('小于或等于1哦') //n=n>1?document. ...

  6. JVM调优总结 -Xms

    转载自:http://unixboy.iteye.com/blog/174173/ 设置eclipse : -Xms256M -Xmx512M -XX:PermSize=256m -XX:MaxPer ...

  7. 【Alpha版本】冲刺阶段——Day6

    [Alpha版本]冲刺阶段--Day6 阅读目录 今日进展 问题困难 明日任务 今日贡献量 TODOlist [今日进展] 为注册模块增加界面代码 public static void Windows ...

  8. Linux服务器---流量监控bandwidthd

    Bandwidthd Bandwidthd是一款免费的流量监控软件,它可以用图标的方式展现出网络流量行为,并且可区分出ftp.tcp等各种协议的流量. 1.安装一些依赖软件 [root@localho ...

  9. WEB前端移动开发初始化

    meta篇 1.视窗宽度 <meta name="viewport" content="width=device-width,initial-scale=1.0,m ...

  10. linux Vue+nginx+django 实现前后端分离

    示例项目 -- LuffyCity.com 的上线 具体解释,vue前端提供静态页面,且可以向后台发起get,post等restful请求 django后台提供数据支撑,返回json数据,返回给vue ...