前言

  红胖子,来也!
  识别除了传统的模板匹配之外就是体征点了,此篇介绍了SIFT特征点提取使用方法。

 

Demo

  
  
  
  

 

SIFT特征点

概述

  SIFT,即尺度不变特征变换(Scale-invariant feature transform,SIFT),是用于图像处理领域的一种描述。这种描述具有尺度不变性,可在图像中检测出关键点,是一种局部特征描述子。

SIFT算法特点

  • SIFT特征是局部特征,其对旋转、尺度缩放、亮度变化保持不变性,对视角变化、仿射变换、噪声也保持一定程度的稳定性;
  • 区分性(Distinctiveness)好,信息量丰富,适用于在海量特征数据库中进行快速、准确的匹配;
  • 多量性,即使少数的几个物体也可以产生大量的SIFT特征向量;
  • 高速性,经优化的SIFT匹配算法甚至可以达到实时的要求;
  • 可扩展性,可以很方便的与其他形式的特征向量进行联合;

特征检测步骤

步骤一:尺度空间极值检测

  搜索所有尺度上的图像位置。通过高斯微分函数来识别潜在的对于尺度和旋转不变的兴趣点。
  过程了解,知道实现的基本原理,如下图:

步骤二:关键点定位

  在每个候选的位置上,通过一个拟合精细的模型来确定位置和尺度。关键点的选择依据于它们的稳定程度。
  采用的方法是LoG近似DoG找到关键点<检测DOG尺度空间极值点>

步骤三:方向确定

  基于图像局部的梯度方向,分配给每个关键点位置一个或多个方向。所有后面的对图像数据的操作都相对于关键点的方向、尺度和位置进行变换,从而提供对于这些变换的不变性。

步骤四:关键点描述

  在每个关键点周围的邻域内,在选定的尺度上测量图像局部的梯度。这些梯度被变换成一种表示,这种表示允许比较大的局部形状的变形和光照变化。
每一个关键点,都拥有位置、尺度以及方向三个信息。为每个关键点建立一个描述符,用一组向量将这个关键点描述出来,使其不随各种变化而改变,比如光照变化、视角变化等等。这个描述子不但包括关键点,也包含关键点周围对其有贡献的像素点,并且描述符应该有较高的独特性,以便于提高特征点正确匹配的概率。

SiftFeatureDetector类

  该类是opencv中nonfree模块中的,之前没有勾选,需要需要重新勾选编译才会有的,所以按照3.4的最新版本为3.4.10,笔者重新编译了一个版本,带contrib模块,编译请参考博文《OpenCV开发笔记(三十四):红胖子带你小白式编译Qt+openCV3.4.1+opencv_contrib(全网最简单最强,可读性最高,没有之一)》,配置时,需要额外勾选下图显示的项:
  编译好后,头文件和库替换,重新连接到3.4.10版本,使用sift。
  需要添加头文件:

#include <opencv2/xfeatures2d.hpp>

SiftFeatureDetector类的使用

cv::Ptr<cv::xfeatures2d::SIFT> _pSift = cv::xfeatures2d::SiftFeatureDetector::create();
std::vector<cv::KeyPoint> keyPoints1;
//特征点检测
_pSift->detect(srcMat, keyPoints1);

SIFT宏定义

typedef SIFT SiftFeatureDetector;
typedef SIFT SiftDescriptorExtractor;

SIFT相关函数原型

static Ptr<xfeatures2d::SIFT> create(int nfeatures = 0,
int nOctaveLayers = 3,
double contrastThreshold = 0.04,
double edgeThreshold = 10,
double sigma = 1.6);
  • 参数一:int类型的nfeatures,默认值0,nfeatures要保留的最佳特征点数。这些特征是按分数排列的(用SIFT算法作为局部对比度);
  • 参数二:int类型的nOctaveLayers,默认值3,每八度音阶的层数。3是D.Lowe纸张中使用的值。这个八度音阶数是根据图像分辨率自动计算出来的;
  • 参数三:double类型的contrastThreshold,默认值0.04,用于半均匀滤除弱特征的对比度阈值(低对比度)区域。阈值越大,检测器产生的特征越少;
  • 参数四:double类型的edgeThreshold,默认值10,用于滤除边缘状特征的阈值。注意它的含义与对比度阈值不同,即边缘阈值越大,特征越少过滤掉(保留更多功能)。
  • 参数五:double类型的sigma,默认值1.6,高斯的sigma,应用于输入图像的标准偏差。
void xfeatures2d::SIFT::detect( InputArray image,
std::vector<KeyPoint>& keypoints,
InputArray mask=noArray() );
  • 参数一:InputArray类型的image,输入cv::Mat;
  • 参数二:std::Vector类型的keypoints,检测到的关键点;
  • 参数三:InputArray类型的mask,默认为空,指定在何处查找关键点的掩码(可选)。它必须是8位整数感兴趣区域中具有非零值的矩阵。
void xfeatures2d::SIFT::compute( InputArray image,
std::vector<KeyPoint>& keypoints,
OutputArray descriptors );
  • 参数一:InputArray类型的image,输入cv::Mat;
  • 参数二:std::Vector类型的keypoints,描述符不能为其已删除计算的。有时可以添加新的关键点,例如:SIFT duplicates keypoint有几个主要的方向(每个方向);
  • 参数三:OutputArray类型的descriptors,计算描述符;
// 该函数结合了detect和compute,参照detect和compute函数参数
void xfeatures2d::SIFT::detectAndCompute( InputArray image,
InputArray mask,
std::vector<KeyPoint>& keypoints,
OutputArray descriptors,
bool useProvidedKeypoints=false );

绘制关键点函数原型

void drawKeypoints( InputArray image,
const std::vector<KeyPoint>& keypoints,
InputOutputArray outImage,
const Scalar& color=Scalar::all(-1),
int flags=DrawMatchesFlags::DEFAULT );
  • 参数一:InputArray类型的image,;
  • 参数二:std::Vector类型的keypoints,原图的关键点;
  • 参数三:InputOutputArray类型的outImage,其内容取决于定义在输出图像。请参阅参数五的标志flag);
  • 参数四:cv::Scalar类型的color,绘制关键点的颜色,默认为Scalar::all(-1)随机颜色,每个点都是这个颜色,那么随机时,每个点都是随机的;
  • 参数五:int类型的flags,默认为DEFAULT,具体参照DrawMatchesFlags枚举如下:
      
 

相关博客

 

Demo源码

void OpenCVManager::testSiftFeatureDetector()
{
QString fileName1 = "16.jpg";
int width = 400;
int height = 300; cv::Mat srcMat = cv::imread(fileName1.toStdString());
cv::resize(srcMat, srcMat, cv::Size(width, height)); cv::String windowName = _windowTitle.toStdString();
cvui::init(windowName); cv::Mat windowMat = cv::Mat(cv::Size(srcMat.cols * 2, srcMat.rows * 3),
srcMat.type()); cv::Ptr<cv::xfeatures2d::SIFT> _pSift = cv::xfeatures2d::SiftFeatureDetector::create(); int k1x = 0;
int k1y = 0;
int k2x = 100;
int k2y = 0;
int k3x = 100;
int k3y = 100;
int k4x = 0;
int k4y = 100;
while(true)
{
windowMat = cv::Scalar(0, 0, 0); cv::Mat mat; // 原图先copy到左边
mat = windowMat(cv::Range(srcMat.rows * 1, srcMat.rows * 2),
cv::Range(srcMat.cols * 0, srcMat.cols * 1));
cv::addWeighted(mat, 0.0f, srcMat, 1.0f, 0.0f, mat); {
std::vector<cv::KeyPoint> keyPoints1;
std::vector<cv::KeyPoint> keyPoints2; cvui::printf(windowMat, 0 + width * 1, 10 + height * 0, "k1x");
cvui::trackbar(windowMat, 0 + width * 1, 20 + height * 0, 165, &k1x, 0, 100);
cvui::printf(windowMat, 0 + width * 1, 70 + height * 0, "k1y");
cvui::trackbar(windowMat, 0 + width * 1, 80 + height * 0, 165, &k1y, 0, 100); cvui::printf(windowMat, width / 2 + width * 1, 10 + height * 0, "k2x");
cvui::trackbar(windowMat, width / 2 + width * 1, 20 + height * 0, 165, &k2x, 0, 100);
cvui::printf(windowMat, width / 2 + width * 1, 70 + height * 0, "k2y");
cvui::trackbar(windowMat, width / 2 + width * 1, 80 + height * 0, 165, &k2y, 0, 100); cvui::printf(windowMat, 0 + width * 1, 10 + height * 0 + height / 2, "k3x");
cvui::trackbar(windowMat, 0 + width * 1, 20 + height * 0 + height / 2, 165, &k3x, 0, 100);
cvui::printf(windowMat, 0 + width * 1, 70 + height * 0 + height / 2, "k3y");
cvui::trackbar(windowMat, 0 + width * 1, 80 + height * 0 + height / 2, 165, &k3y, 0, 100); cvui::printf(windowMat, width / 2 + width * 1, 10 + height * 0 + height / 2, "k4x");
cvui::trackbar(windowMat, width / 2 + width * 1, 20 + height * 0 + height / 2, 165, &k4x, 0, 100);
cvui::printf(windowMat, width / 2 + width * 1, 70 + height * 0 + height / 2, "k4y");
cvui::trackbar(windowMat, width / 2 + width * 1, 80 + height * 0 + height / 2, 165, &k4y, 0, 100); std::vector<cv::Point2f> srcPoints;
std::vector<cv::Point2f> dstPoints; srcPoints.push_back(cv::Point2f(0.0f, 0.0f));
srcPoints.push_back(cv::Point2f(srcMat.cols - 1, 0.0f));
srcPoints.push_back(cv::Point2f(srcMat.cols - 1, srcMat.rows - 1));
srcPoints.push_back(cv::Point2f(0.0f, srcMat.rows - 1)); dstPoints.push_back(cv::Point2f(srcMat.cols * k1x / 100.0f, srcMat.rows * k1y / 100.0f));
dstPoints.push_back(cv::Point2f(srcMat.cols * k2x / 100.0f, srcMat.rows * k2y / 100.0f));
dstPoints.push_back(cv::Point2f(srcMat.cols * k3x / 100.0f, srcMat.rows * k3y / 100.0f));
dstPoints.push_back(cv::Point2f(srcMat.cols * k4x / 100.0f, srcMat.rows * k4y / 100.0f)); cv::Mat M = cv::getPerspectiveTransform(srcPoints, dstPoints);
cv::Mat srcMat2;
cv::warpPerspective(srcMat,
srcMat2,
M,
cv::Size(srcMat.cols, srcMat.rows),
cv::INTER_LINEAR,
cv::BORDER_CONSTANT,
cv::Scalar::all(0)); mat = windowMat(cv::Range(srcMat.rows * 1, srcMat.rows * 2),
cv::Range(srcMat.cols * 1, srcMat.cols * 2));
cv::addWeighted(mat, 0.0f, srcMat2, 1.0f, 0.0f, mat); //特征点检测
_pSift->detect(srcMat, keyPoints1);
//绘制特征点(关键点)
cv::Mat resultShowMat;
cv::drawKeypoints(srcMat,
keyPoints1,
resultShowMat,
cv::Scalar(0, 0, 255),
cv::DrawMatchesFlags::DRAW_RICH_KEYPOINTS);
mat = windowMat(cv::Range(srcMat.rows * 2, srcMat.rows * 3),
cv::Range(srcMat.cols * 0, srcMat.cols * 1));
cv::addWeighted(mat, 0.0f, resultShowMat, 1.0f, 0.0f, mat); //特征点检测
_pSift->detect(srcMat2, keyPoints2);
//绘制特征点(关键点)
cv::Mat resultShowMat2;
cv::drawKeypoints(srcMat2,
keyPoints2,
resultShowMat2,
cv::Scalar(0, 0, 255),
cv::DrawMatchesFlags::DRAW_RICH_KEYPOINTS);
mat = windowMat(cv::Range(srcMat.rows * 2, srcMat.rows * 3),
cv::Range(srcMat.cols * 1, srcMat.cols * 2));
cv::addWeighted(mat, 0.0f, resultShowMat2, 1.0f, 0.0f, mat); cv::imshow(windowName, windowMat);
}
// 更新
cvui::update();
// 显示
// esc键退出
if(cv::waitKey(25) == 27)
{
break;
}
}
}
 

工程模板:对应版本号v1.57.0

  对应版本号v1.57.0

 

OpenCV开发笔记(六十三):红胖子8分钟带你深入了解SIFT特征点(图文并茂+浅显易懂+程序源码)的更多相关文章

  1. OpenCV开发笔记(五十六):红胖子8分钟带你深入了解多种图形拟合逼近轮廓(图文并茂+浅显易懂+程序源码)

    若该文为原创文章,未经允许不得转载原博主博客地址:https://blog.csdn.net/qq21497936原博主博客导航:https://blog.csdn.net/qq21497936/ar ...

  2. OpenCV开发笔记(六十四):红胖子8分钟带你深入了解SURF特征点(图文并茂+浅显易懂+程序源码)

    若该文为原创文章,未经允许不得转载原博主博客地址:https://blog.csdn.net/qq21497936原博主博客导航:https://blog.csdn.net/qq21497936/ar ...

  3. OpenCV开发笔记(六十五):红胖子8分钟带你深入了解ORB特征点(图文并茂+浅显易懂+程序源码)

    若该文为原创文章,未经允许不得转载原博主博客地址:https://blog.csdn.net/qq21497936原博主博客导航:https://blog.csdn.net/qq21497936/ar ...

  4. OpenCV开发笔记(六十九):红胖子8分钟带你使用传统方法识别已知物体(图文并茂+浅显易懂+程序源码)

    若该文为原创文章,未经允许不得转载原博主博客地址:https://blog.csdn.net/qq21497936原博主博客导航:https://blog.csdn.net/qq21497936/ar ...

  5. OpenCV开发笔记(五十五):红胖子8分钟带你深入了解Haar、LBP特征以及级联分类器识别过程(图文并茂+浅显易懂+程序源码)

    若该文为原创文章,未经允许不得转载原博主博客地址:https://blog.csdn.net/qq21497936原博主博客导航:https://blog.csdn.net/qq21497936/ar ...

  6. OpenCV开发笔记(七十一):红胖子8分钟带你深入级联分类器训练

    前言   红胖子,来也!  做图像处理,经常头痛的是明明分离出来了(非颜色的),分为几块区域,那怎么知道这几块区域到底哪一块是我们需要的,那么这部分就涉及到需要识别了.  识别可以自己写模板匹配.特征 ...

  7. OpenCV开发笔记(七十三):红胖子8分钟带你使用opencv+dnn+yolov3识别物体

      前言   级联分类器的效果并不是很好,准确度相对深度学习较低,上一章节使用了dnn中的tensorflow,本章使用yolov3模型,识别出具体的分类.   Demo   320x320,置信度0 ...

  8. OpenCV开发笔记(七十二):红胖子8分钟带你使用opencv+dnn+tensorFlow识别物体

    前言   级联分类器的效果并不是很好,准确度相对深度学习较低,本章使用opencv通过tensorflow深度学习,检测已有模型的分类.   Demo       可以猜测,1其实是人,18序号类是狗 ...

  9. OpenCV开发笔记(七十四):OpenCV3.4.1+ffmpeg3.4.8交叉编译移植到海思平台Hi35xx平台

    前言   移植opencv到海思平台,opencv支持对视频进行解码,需要对应的ffmpeg支持.   Ffmpeg的移植   Ffmpeg的移植请参考之前的文章:<FFmpeg开发笔记(十): ...

  10. Django开发笔记六

    Django开发笔记一 Django开发笔记二 Django开发笔记三 Django开发笔记四 Django开发笔记五 Django开发笔记六 1.登录功能完善 登录成功应该是重定向到首页,而不是转发 ...

随机推荐

  1. [转帖]MegaRaidCli64 常用命令解释

    MegaRaidCli64 常用命令解释 安装 查看 创建 删除 案例 安装 Centos wget https://docs.broadcom.com/docs-and-downloads/raid ...

  2. [转帖]linux 系统级性能分析工具 perf 的介绍与使用

    目录 1. 背景知识 1.1 tracepoints 1.2 硬件特性之cache 2. 主要关注点 3. perf的使用 3.0 perf引入的overhead 3.1 perf list 3.2 ...

  3. CentOS8 解决 yum元数据下载失败的方法

    背景 最近同事反馈CentOS的机器无法再现安装 rpm包了. 提示信息主要是下载源数据失败. 今天上午抽时间进行了一下简单验证, 晚上进行一下总结. 避免遗忘. 认为与Redhat被IBM收购之后, ...

  4. 前端 Git-Hooks 工程化实践

    前言 前段时间,部门的前端项目迁移到 monorepo 架构,笔者在其中负责跟 git 工作流相关的事情,其中就包括 git hooks 相关的工程化的实践.用到了一些常用的相关工具如 husky.l ...

  5. React中Props的详细使用和props的校验

    props中的children属性 组件标签只用有子节点的时候,props就会有该属性; children的属性跟props一样的,值可以是任意值;(文本,React元素,组件,函数) 组件: < ...

  6. vue中v-model修饰符的使用和组件使用v-model

    1.lazy 修饰器 lazy修饰器在input框中的表现效果是: 当你失去焦点后值才会跟新. 它的跟新时机是失去焦点后 这个修饰器在项目中运用的场景较少 <template> <d ...

  7. 【k哥爬虫普法】程序员183并发爬取官方网站,直接获刑3年?

    我国目前并未出台专门针对网络爬虫技术的法律规范,但在司法实践中,相关判决已屡见不鲜,K 哥特设了"K哥爬虫普法"专栏,本栏目通过对真实案例的分析,旨在提高广大爬虫工程师的法律意识, ...

  8. 手撕Vue-监听数据变化

    经过上一篇的介绍,已经实现了将模板编译成具体数据,接下来要介绍的是如何监听数据的变化,本章主要完成这个需求即可. 在我们文章的开始,我写了一个 Vue 双向数据绑定原理的文章当中封装了一个 Obser ...

  9. 小白学k8s(3)什么是内网穿透

    什么是内网穿透 内网穿透 工作方式 通信的一方处于内网 通信的双方都处于内网 NAT穿透的原理 UDP内网穿透的实现流程 参考 什么是内网穿透 内网穿透 什么是内网穿透呢? 百度百科的描述 内网穿透, ...

  10. Markdown-CSDN自带帮助语法

    这里写自定义目录标题 欢迎使用Markdown编辑器 新的改变 功能快捷键 合理的创建标题,有助于目录的生成 如何改变文本的样式 插入链接与图片 如何插入一段漂亮的代码片 生成一个适合你的列表 创建一 ...