model.train方法的dataset_sink_mode参数设置为False时以step作为单位打印数据——(只在mode=context.GRAPH_MODE下成立,在mode=context.PYNATIVE_MODE模式下不成立)
如题:
官方中的内容支持:
使用summary功能时,建议将model.train
方法的dataset_sink_mode
参数设置为False
,从而以step
作为collect_freq
参数的单位收集数据。当dataset_sink_mode
为True
时,将以epoch
作为collect_freq
的单位,此时建议手动设置collect_freq
参数。collect_freq
参数默认值为10
。
从官方文档中我们可以知道:
如果model.train
方法的dataset_sink_mode
参数设置为False
,那么就是以step为单位打印数据。
如果model.train
方法的dataset_sink_mode
参数设置为True
,那么就是以episode为单位打印数据。
这里我们不过多解释,直接上代码:
(代码具体参看:https://www.cnblogs.com/devilmaycry812839668/p/14971668.html)
当 dataset_sink_mode=False 时:
model.train(epoch_size, ds_train, callbacks=[ckpoint_cb, LossMonitor(125)], dataset_sink_mode=False)


#!/usr/bin python
# encoding:UTF-8 """" 对输入的超参数进行处理 """
import os
import argparse """ 设置运行的背景context """
from mindspore import context """ 对数据集进行预处理 """
import mindspore.dataset as ds
import mindspore.dataset.transforms.c_transforms as C
import mindspore.dataset.vision.c_transforms as CV
from mindspore.dataset.vision import Inter
from mindspore import dtype as mstype """ 构建神经网络 """
import mindspore.nn as nn
from mindspore.common.initializer import Normal """ 训练时对模型参数的保存 """
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig """ 导入模型训练需要的库 """
from mindspore.nn import Accuracy
from mindspore.train.callback import LossMonitor
from mindspore import Model parser = argparse.ArgumentParser(description='MindSpore LeNet Example')
parser.add_argument('--device_target', type=str, default="GPU", choices=['Ascend', 'GPU', 'CPU']) args = parser.parse_known_args()[0] # 为mindspore设置运行背景context
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target) def create_dataset(data_path, batch_size=32, repeat_size=1,
num_parallel_workers=1):
# 定义数据集
mnist_ds = ds.MnistDataset(data_path)
resize_height, resize_width = 32, 32
rescale = 1.0 / 255.0
shift = 0.0
rescale_nml = 1 / 0.3081
shift_nml = -1 * 0.1307 / 0.3081 # 定义所需要操作的map映射
resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR)
rescale_nml_op = CV.Rescale(rescale_nml, shift_nml)
rescale_op = CV.Rescale(rescale, shift)
hwc2chw_op = CV.HWC2CHW()
type_cast_op = C.TypeCast(mstype.int32) # 使用map映射函数,将数据操作应用到数据集
mnist_ds = mnist_ds.map(operations=type_cast_op, input_columns="label", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=resize_op, input_columns="image", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=rescale_op, input_columns="image", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=rescale_nml_op, input_columns="image", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=hwc2chw_op, input_columns="image", num_parallel_workers=num_parallel_workers) # 进行shuffle、batch、repeat操作
buffer_size = 10000
mnist_ds = mnist_ds.shuffle(buffer_size=buffer_size)
mnist_ds = mnist_ds.batch(batch_size, drop_remainder=True)
mnist_ds = mnist_ds.repeat(repeat_size) return mnist_ds class LeNet5(nn.Cell):
"""
Lenet网络结构
""" def __init__(self, num_class=10, num_channel=1):
super(LeNet5, self).__init__()
# 定义所需要的运算
self.conv1 = nn.Conv2d(num_channel, 6, 5, pad_mode='valid')
self.conv2 = nn.Conv2d(6, 16, 5, pad_mode='valid')
self.fc1 = nn.Dense(16 * 5 * 5, 120, weight_init=Normal(0.02))
self.fc2 = nn.Dense(120, 84, weight_init=Normal(0.02))
self.fc3 = nn.Dense(84, num_class, weight_init=Normal(0.02))
self.relu = nn.ReLU()
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
self.flatten = nn.Flatten() def construct(self, x):
# 使用定义好的运算构建前向网络
x = self.conv1(x)
x = self.relu(x)
x = self.max_pool2d(x)
x = self.conv2(x)
x = self.relu(x)
x = self.max_pool2d(x)
x = self.flatten(x)
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
x = self.relu(x)
x = self.fc3(x)
return x # 实例化网络
net = LeNet5() # 定义损失函数
net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean') # 定义优化器
net_opt = nn.Momentum(net.trainable_params(), learning_rate=0.01, momentum=0.9) # 设置模型保存参数
# 每125steps保存一次模型参数,最多保留15个文件
config_ck = CheckpointConfig(save_checkpoint_steps=125, keep_checkpoint_max=15)
# 应用模型保存参数
ckpoint = ModelCheckpoint(prefix="checkpoint_lenet", config=config_ck) def train_net(args, model, epoch_size, data_path, repeat_size, ckpoint_cb, sink_mode):
"""定义训练的方法"""
# 加载训练数据集
ds_train = create_dataset(os.path.join(data_path, "train"), 32, repeat_size)
model.train(epoch_size, ds_train, callbacks=[ckpoint_cb, LossMonitor(125)], dataset_sink_mode=sink_mode) def test_net(network, model, data_path):
"""定义验证的方法"""
ds_eval = create_dataset(os.path.join(data_path, "test"))
acc = model.eval(ds_eval, dataset_sink_mode=False)
print("{}".format(acc)) mnist_path = "./datasets/MNIST_Data"
train_epoch = 1
dataset_size = 1
model = Model(net, net_loss, net_opt, metrics={"Accuracy": Accuracy()})
train_net(args, model, train_epoch, mnist_path, dataset_size, ckpoint, False)
test_net(net, model, mnist_path)
输出结果:
epoch: 1 step: 125, loss is 2.2959
epoch: 1 step: 250, loss is 2.2959309
epoch: 1 step: 375, loss is 2.2982068
epoch: 1 step: 500, loss is 2.2916625
epoch: 1 step: 625, loss is 2.3001077
epoch: 1 step: 750, loss is 1.9395046
epoch: 1 step: 875, loss is 0.728865
epoch: 1 step: 1000, loss is 0.2426785
epoch: 1 step: 1125, loss is 0.45475814
epoch: 1 step: 1250, loss is 0.1676599
epoch: 1 step: 1375, loss is 0.14273866
epoch: 1 step: 1500, loss is 0.030339874
epoch: 1 step: 1625, loss is 0.19792284
epoch: 1 step: 1750, loss is 0.09066871
epoch: 1 step: 1875, loss is 0.12958783
{'Accuracy': 0.9688501602564102}
当 dataset_sink_mode=True 时:
model.train(epoch_size, ds_train, callbacks=[ckpoint_cb, LossMonitor(125)], dataset_sink_mode=True)


#!/usr/bin python
# encoding:UTF-8 """" 对输入的超参数进行处理 """
import os
import argparse """ 设置运行的背景context """
from mindspore import context """ 对数据集进行预处理 """
import mindspore.dataset as ds
import mindspore.dataset.transforms.c_transforms as C
import mindspore.dataset.vision.c_transforms as CV
from mindspore.dataset.vision import Inter
from mindspore import dtype as mstype """ 构建神经网络 """
import mindspore.nn as nn
from mindspore.common.initializer import Normal """ 训练时对模型参数的保存 """
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig """ 导入模型训练需要的库 """
from mindspore.nn import Accuracy
from mindspore.train.callback import LossMonitor
from mindspore import Model parser = argparse.ArgumentParser(description='MindSpore LeNet Example')
parser.add_argument('--device_target', type=str, default="GPU", choices=['Ascend', 'GPU', 'CPU']) args = parser.parse_known_args()[0] # 为mindspore设置运行背景context
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target) def create_dataset(data_path, batch_size=32, repeat_size=1,
num_parallel_workers=1):
# 定义数据集
mnist_ds = ds.MnistDataset(data_path)
resize_height, resize_width = 32, 32
rescale = 1.0 / 255.0
shift = 0.0
rescale_nml = 1 / 0.3081
shift_nml = -1 * 0.1307 / 0.3081 # 定义所需要操作的map映射
resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR)
rescale_nml_op = CV.Rescale(rescale_nml, shift_nml)
rescale_op = CV.Rescale(rescale, shift)
hwc2chw_op = CV.HWC2CHW()
type_cast_op = C.TypeCast(mstype.int32) # 使用map映射函数,将数据操作应用到数据集
mnist_ds = mnist_ds.map(operations=type_cast_op, input_columns="label", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=resize_op, input_columns="image", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=rescale_op, input_columns="image", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=rescale_nml_op, input_columns="image", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=hwc2chw_op, input_columns="image", num_parallel_workers=num_parallel_workers) # 进行shuffle、batch、repeat操作
buffer_size = 10000
mnist_ds = mnist_ds.shuffle(buffer_size=buffer_size)
mnist_ds = mnist_ds.batch(batch_size, drop_remainder=True)
mnist_ds = mnist_ds.repeat(repeat_size) return mnist_ds class LeNet5(nn.Cell):
"""
Lenet网络结构
""" def __init__(self, num_class=10, num_channel=1):
super(LeNet5, self).__init__()
# 定义所需要的运算
self.conv1 = nn.Conv2d(num_channel, 6, 5, pad_mode='valid')
self.conv2 = nn.Conv2d(6, 16, 5, pad_mode='valid')
self.fc1 = nn.Dense(16 * 5 * 5, 120, weight_init=Normal(0.02))
self.fc2 = nn.Dense(120, 84, weight_init=Normal(0.02))
self.fc3 = nn.Dense(84, num_class, weight_init=Normal(0.02))
self.relu = nn.ReLU()
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
self.flatten = nn.Flatten() def construct(self, x):
# 使用定义好的运算构建前向网络
x = self.conv1(x)
x = self.relu(x)
x = self.max_pool2d(x)
x = self.conv2(x)
x = self.relu(x)
x = self.max_pool2d(x)
x = self.flatten(x)
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
x = self.relu(x)
x = self.fc3(x)
return x # 实例化网络
net = LeNet5() # 定义损失函数
net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean') # 定义优化器
net_opt = nn.Momentum(net.trainable_params(), learning_rate=0.01, momentum=0.9) # 设置模型保存参数
# 每125steps保存一次模型参数,最多保留15个文件
config_ck = CheckpointConfig(save_checkpoint_steps=125, keep_checkpoint_max=15)
# 应用模型保存参数
ckpoint = ModelCheckpoint(prefix="checkpoint_lenet", config=config_ck) def train_net(args, model, epoch_size, data_path, repeat_size, ckpoint_cb, sink_mode):
"""定义训练的方法"""
# 加载训练数据集
ds_train = create_dataset(os.path.join(data_path, "train"), 32, repeat_size)
model.train(epoch_size, ds_train, callbacks=[ckpoint_cb, LossMonitor(125)], dataset_sink_mode=sink_mode) def test_net(network, model, data_path):
"""定义验证的方法"""
ds_eval = create_dataset(os.path.join(data_path, "test"))
acc = model.eval(ds_eval, dataset_sink_mode=False)
print("{}".format(acc)) mnist_path = "./datasets/MNIST_Data"
train_epoch = 1
dataset_size = 1
model = Model(net, net_loss, net_opt, metrics={"Accuracy": Accuracy()})
train_net(args, model, train_epoch, mnist_path, dataset_size, ckpoint, True)
test_net(net, model, mnist_path)
输出结果:
epoch: 1 step: 1875, loss is 0.04107348
{'Accuracy': 0.9638421474358975}
==================================================================
可以看到在mindspore中进行训练时如果设置 dataset_sink_mode=True
那么无论设置多少step打印一次结果,每个epoch中只会打印一次结果,即一个epoch中最后的那个打印结果
(比如数据集中一个epoch是100个数据,batch_size=10, 一个epoch的数据训练需要10个steps, 如果设置dataset_sink_mode=True那么只会打印第10step的结果,前9次step的结果不打印)。
=====================================================================
经过进一步发现,上面的描述都是在 运行背景设置为:
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
下才成立的。
如果设置为:
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
那么,无论 dataset_sink_mode 设置为False 还是True , 都是执行 以step为单位打印数据。
代码如下:
#!/usr/bin python
# encoding:UTF-8 """" 对输入的超参数进行处理 """
import os
import argparse """ 设置运行的背景context """
from mindspore import context """ 对数据集进行预处理 """
import mindspore.dataset as ds
import mindspore.dataset.transforms.c_transforms as C
import mindspore.dataset.vision.c_transforms as CV
from mindspore.dataset.vision import Inter
from mindspore import dtype as mstype """ 构建神经网络 """
import mindspore.nn as nn
from mindspore.common.initializer import Normal """ 训练时对模型参数的保存 """
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig """ 导入模型训练需要的库 """
from mindspore.nn import Accuracy
from mindspore.train.callback import LossMonitor
from mindspore import Model parser = argparse.ArgumentParser(description='MindSpore LeNet Example')
parser.add_argument('--device_target', type=str, default="GPU", choices=['Ascend', 'GPU', 'CPU']) args = parser.parse_known_args()[0] # 为mindspore设置运行背景context
context.set_context(mode=context.PYNATIVE_MODE, device_target=args.device_target) def create_dataset(data_path, batch_size=32, repeat_size=1,
num_parallel_workers=1):
# 定义数据集
mnist_ds = ds.MnistDataset(data_path)
resize_height, resize_width = 32, 32
rescale = 1.0 / 255.0
shift = 0.0
rescale_nml = 1 / 0.3081
shift_nml = -1 * 0.1307 / 0.3081 # 定义所需要操作的map映射
resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR)
rescale_nml_op = CV.Rescale(rescale_nml, shift_nml)
rescale_op = CV.Rescale(rescale, shift)
hwc2chw_op = CV.HWC2CHW()
type_cast_op = C.TypeCast(mstype.int32) # 使用map映射函数,将数据操作应用到数据集
mnist_ds = mnist_ds.map(operations=type_cast_op, input_columns="label", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=resize_op, input_columns="image", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=rescale_op, input_columns="image", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=rescale_nml_op, input_columns="image", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=hwc2chw_op, input_columns="image", num_parallel_workers=num_parallel_workers) # 进行shuffle、batch、repeat操作
buffer_size = 10000
mnist_ds = mnist_ds.shuffle(buffer_size=buffer_size)
mnist_ds = mnist_ds.batch(batch_size, drop_remainder=True)
mnist_ds = mnist_ds.repeat(repeat_size) return mnist_ds class LeNet5(nn.Cell):
"""
Lenet网络结构
""" def __init__(self, num_class=10, num_channel=1):
super(LeNet5, self).__init__()
# 定义所需要的运算
self.conv1 = nn.Conv2d(num_channel, 6, 5, pad_mode='valid')
self.conv2 = nn.Conv2d(6, 16, 5, pad_mode='valid')
self.fc1 = nn.Dense(16 * 5 * 5, 120, weight_init=Normal(0.02))
self.fc2 = nn.Dense(120, 84, weight_init=Normal(0.02))
self.fc3 = nn.Dense(84, num_class, weight_init=Normal(0.02))
self.relu = nn.ReLU()
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
self.flatten = nn.Flatten() def construct(self, x):
# 使用定义好的运算构建前向网络
x = self.conv1(x)
x = self.relu(x)
x = self.max_pool2d(x)
x = self.conv2(x)
x = self.relu(x)
x = self.max_pool2d(x)
x = self.flatten(x)
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
x = self.relu(x)
x = self.fc3(x)
return x # 实例化网络
net = LeNet5() # 定义损失函数
net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean') # 定义优化器
net_opt = nn.Momentum(net.trainable_params(), learning_rate=0.01, momentum=0.9) # 设置模型保存参数
# 每125steps保存一次模型参数,最多保留15个文件
config_ck = CheckpointConfig(save_checkpoint_steps=125, keep_checkpoint_max=15)
# 应用模型保存参数
ckpoint = ModelCheckpoint(prefix="checkpoint_lenet", config=config_ck) def train_net(args, model, epoch_size, data_path, repeat_size, ckpoint_cb, sink_mode):
"""定义训练的方法"""
# 加载训练数据集
ds_train = create_dataset(os.path.join(data_path, "train"), 32, repeat_size)
model.train(epoch_size, ds_train, callbacks=[ckpoint_cb, LossMonitor(125)], dataset_sink_mode=sink_mode) def test_net(network, model, data_path):
"""定义验证的方法"""
ds_eval = create_dataset(os.path.join(data_path, "test"))
acc = model.eval(ds_eval, dataset_sink_mode=False)
print("{}".format(acc)) mnist_path = "./datasets/MNIST_Data"
train_epoch = 1
dataset_size = 1
model = Model(net, net_loss, net_opt, metrics={"Accuracy": Accuracy()})
train_net(args, model, train_epoch, mnist_path, dataset_size, ckpoint, True)
test_net(net, model, mnist_path)
不得不说,对于新框架 MindSpore 来说,还是坑蛮多的,稍有不注意就会出意料以外的结果。
model.train方法的dataset_sink_mode参数设置为False时以step作为单位打印数据——(只在mode=context.GRAPH_MODE下成立,在mode=context.PYNATIVE_MODE模式下不成立)的更多相关文章
- 解决部分在Debug模式下程序没问题但是Release模式下出现问题的方法
编译策略介绍 关于优化级别:GCC_OPTIMIZATION_LEVEL 描述如下 None: Do not optimize. [-O0]With this setting, the compil ...
- uploadify3.2.1的参数设置
$('#file_upload').uploadify({ auto:false, //接受true 或 false两个值,当为true时选择文件后会自动上传:为false时只会把选择的文件增加进队列 ...
- ArcEngine中IFeatureClass.Search(filter, Recycling)方法中Recycling参数的理解
转自 ArcEngine中IFeatureClass.Search(filter, Recycling)方法中Recycling参数的理解 ArcGIS Engine中总调用IFeatureCla ...
- jqGrid的autoencode参数设置为true在客户端可能引发的编码问题
不久前使用jqGrid+MVC做过一段时间开发. 一开始,分页参数几乎都是默认值,jqGrid的分页功能很好用. 考虑到each input is evil,我们的系统对安全性又有较高要求,所以,为了 ...
- SSRS报表参数设置
一.日期时间类型的参数注意事项: 关于数据类型的选择:(只有数据类型设置为日期/时间格式,在查询的时候才会显示日期控件,提示信息一般改成汉字) 指定默认值:指定开始日期为前10天,
- Lattice 的 Framebuffer IP核使用调试笔记之IP核生成与参数设置
本文由远航路上ing 原创,转载请标明出处. 这节笔记记录IP核的生成以及参数设置. 先再IP库里下载安装Framebuffer 的ipcore 并安装完毕. 一.IP核的生成: 1.先点击IP核则右 ...
- mysql参数设置与查看
查看默认的参数设置(包含读取到的参数文件中的设置) mysqld --verbose --help 查看默认的参数设置(不包含参数文件中的设置) mysqld --no-defaults --ve ...
- 【记录一个问题】opencl enqueueWriteBuffer()中,cl_bool blocking参数设置无效
err = queue.enqueueWriteBuffer(in_buf, true, 0, bmp_size, bmp_data, NULL, &event); 以上代码中,第二个参数设置 ...
- Jdbc Url 设置allowMultiQueries为true和false时底层处理机制研究
一个mysql jdbc待解之谜 关于jdbc url参数 allowMultiQueries 如下的一个普通JDBC示例: String user ="root"; Strin ...
- cxf client在后台不通且chunk设置为false的时候不能在控制台输出请求日志
场景: 服务编排框架支持编排webservice服务.call webservice的client是基于cxf做的.为了使用服务编排的开发者调试与定位问题方便,需要将webservice的请求与响应报 ...
随机推荐
- 5 分钟小工具:使用 dive 分析 docker 镜像
需求 拿到一个镜像之后,我想知道: 分层查看镜像里都有哪些文件 各层使用了什么命令构建的这个镜像 镜像里比较大的文件有哪些(可能需要优化) dive 工具介绍 dive 工具可以做这些分析.dive ...
- Mybatis-MySQL 中使用IFNUL
Mybatis-MySQL 中使用IFNULL(p1,p2)函数但是有一些需要注意的地方. 假设数据 title: student id name age 1 Ann 18 2 Bom 19 3 He ...
- DeepFaceLab换脸使用
将视频转换成图片,从图片中提取人脸,从人脸中学习特征.然后应用模型,先对图片进行换脸,然后把图片合成视频. 1.src视频分解图像 2.dst视频分解图像 3.src提取面部 4.dst提取面部 5. ...
- Flash驱动控制--芯片擦除(SPI协议)
摘要: 本篇博客具体包括SPI协议的基本原理.模式选择以及时序逻辑要求,采用FPGA(EPCE4),通过SPI通信协议,对flash(W25Q16BV)存储的固化程序进行芯片擦除操作. 关键词:SPI ...
- Django设置、使用Cookie
使用背景: 前端根据用户选择的模块,结合ajax实现局部刷新,进到到具体模块页面后,返回,希望保持到原来选择的模块上,这就需要保存当前选择的模块id; 尝试: 1.使用Js的设置cookie,douc ...
- 常用RAID级别简介
RAID不同等级的两个目标: 1. 增加数据可靠性 2. 增加存储的读写性能 RAID级别: RAID-0: 是以条带的形式将数据均匀分布在阵列的各个磁盘上 优点:读写性能高,不存在校验,不会 ...
- hive第二课:Hive3.1.2概述与基本操作(修改版)
Hive3.1.2概述与基本操作 1.Hive基本概念 1.1 Hive简介 Hive本质是将SQL转换为MapReduce的任务进行运算,底层由HDFS来提供数据存储,说白了hive可以理解为一个将 ...
- Linux Driver : i2c-gpio
# Linux Driver : i2c-gpio https://www.cnblogs.com/haoxing990/p/4718834.html https://blog.csdn.net/ji ...
- 结合RNN与Transformer双重优点,深度解析大语言模型RWKV
本文分享自华为云社区<[云驻共创]昇思MindSpore技术公开课 RWKV 模型架构深度解析>,作者:Freedom123. 一.前言 Transformer模型作为一种革命性的神经网络 ...
- 也说一说IDEA热部署Web项目最终解决方案,确实大大提高工作效率
热部署就是正在运行状态的应用,修改了它的源码之后,在不重新启动的情况下能够自动把增量内容编译并部署到服务器上,使得修改立即生效.热部署为了解决的问题有两个: 1.在开发的时候,修改代码后不需要重启应用 ...