一、介绍

蔬菜识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Django框架,开发网页端操作平台,实现用户上传一张图片识别其名称。

二、效果图片

三、演示视频+代码

视频+完整代码:https://www.yuque.com/ziwu/yygu3z/uc1z9asdufhe1co7

四、TensorFlow图像分类示例

TensorFlow是由Google开发的开源机器学习框架,广泛应用于深度学习任务。它提供了一套丰富的工具和库,使得构建、训练和部署深度学习模型变得更加简单和高效。TensorFlow基于数据流图的概念,使用图来表示计算过程中的数据流动。它的核心是张量(Tensor),是多维数组的抽象,可以在计算图中流动。

在进行图像识别分类之前,我们需要准备训练数据。通常情况下,我们需要一个包含训练图像和对应标签的数据集。TensorFlow提供了一些便捷的工具来加载和处理图像数据。以下是一个加载图像数据集的示例代码:

import tensorflow as tf
from tensorflow.keras.preprocessing.image import ImageDataGenerator # 定义数据集路径
train_dir = 'train/'
val_dir = 'validation/' # 设置图像预处理参数
train_datagen = ImageDataGenerator(rescale=1./255,
rotation_range=20,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True) val_datagen = ImageDataGenerator(rescale=1./255) # 加载训练数据集
train_generator = train_datagen.flow_from_directory(train_dir,
target_size=(224, 224),
batch_size=32,
class_mode='categorical') # 加载验证数据集
val_generator = val_datagen.flow_from_directory(val_dir,
target_size=(224, 224),
batch_size=32,
class_mode='categorical')

在上述代码中,我们使用ImageDataGenerator来定义图像的预处理参数,并通过flow_from_directory方法从目录中加载数据集。

在TensorFlow中,我们可以使用Keras API来构建图像识别分类模型。Keras提供了一系列方便易用的层和模型,可以帮助我们快速构建深度学习模型。以下是一个使用Keras构建图像分类模型的示例代码:

from tensorflow.keras.applications import VGG16
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten # 加载预训练的VGG16模型
base_model = VGG16(weights='imagenet', include_top=False, input_shape=(224, 224, 3)) # 冻结预训练模型的权重
for layer in base_model.layers:
layer.trainable = False # 构建分类模型
model = Sequential()
model.add(base_model)
model.add(Flatten())
model.add(Dense(256, activation='relu'))
model.add(Dense(10, activation='softmax')) # 编译模型
model.compile(optimizer='adam',
loss='categorical_crossentropy',
metrics=['accuracy'])

在上述代码中,我们使用了VGG16作为预训练的模型,并在其基础上构建了一个全连接层分类模型。

本文介绍了TensorFlow在图像识别分类中的应用,并通过相关代码进行了讲解。通过TensorFlow提供的工具和库,我们可以方便地构建、训练和评估图像识别分类模型。

蔬菜识别系统Python+TensorFlow+Django+卷积神经网络算法的更多相关文章

  1. 使用TensorFlow的卷积神经网络识别自己的单个手写数字,填坑总结

    折腾了几天,爬了大大小小若干的坑,特记录如下.代码在最后面. 环境: Python3.6.4 + TensorFlow 1.5.1 + Win7 64位 + I5 3570 CPU 方法: 先用MNI ...

  2. tensorflow CNN 卷积神经网络中的卷积层和池化层的代码和效果图

    tensorflow CNN 卷积神经网络中的卷积层和池化层的代码和效果图 因为很多 demo 都比较复杂,专门抽出这两个函数,写的 demo. 更多教程:http://www.tensorflown ...

  3. TensorFlow实现卷积神经网络

    1 卷积神经网络简介 在介绍卷积神经网络(CNN)之前,我们需要了解全连接神经网络与卷积神经网络的区别,下面先看一下两者的结构,如下所示: 图1 全连接神经网络与卷积神经网络结构 虽然上图中显示的全连 ...

  4. 经典卷积神经网络算法(5):ResNet

    .caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px so ...

  5. 【Python】keras卷积神经网络识别mnist

    卷积神经网络的结构我随意设了一个. 结构大概是下面这个样子: 代码如下: import numpy as np from keras.preprocessing import image from k ...

  6. 字符型图片验证码,使用tensorflow实现卷积神经网络,进行验证码识别CNN

    本项目使用卷积神经网络识别字符型图片验证码,其基于 TensorFlow 框架.它封装了非常通用的校验.训练.验证.识别和调用 API,极大地减低了识别字符型验证码花费的时间和精力. 项目地址: ht ...

  7. Python之TensorFlow的卷积神经网络-5

    一.卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度 ...

  8. 吴裕雄 python 神经网络——TensorFlow 使用卷积神经网络训练和预测MNIST手写数据集

    import tensorflow as tf import numpy as np from tensorflow.examples.tutorials.mnist import input_dat ...

  9. Tensorflow之卷积神经网络(CNN)

    前馈神经网络的弊端 前一篇文章介绍过MNIST,是采用的前馈神经网络的结构,这种结构有一个很大的弊端,就是提供的样本必须面面俱到,否则就容易出现预测失败.如下图: 同样是在一个图片中找圆形,如果左边为 ...

  10. LeNet - Python中的卷积神经网络

    本教程将  主要面向代码,  旨在帮助您 深入学习和卷积神经网络.由于这个意图,我  不会花很多时间讨论激活功能,池层或密集/完全连接的层 - 将来会有  很多教程在PyImageSearch博客上将 ...

随机推荐

  1. k8s加入新的master节点出现etcd检查失败

        背景:     昨天在建立好新的集群后,出现了新的问题,其中的一台master节点无法正常工作.虽然可以正常使用,但是就出现了单点故障,今天在修复时出现了etcd健康检查自检没通过.      ...

  2. KubeSphere 高可用集群搭建并启用所有插件

    介绍 大多数情况下,单主节点集群大致足以供开发和测试环境使用.但是,对于生产环境,您需要考虑集群的高可用性.如果关键组件(例如 kube-apiserver.kube-scheduler 和 kube ...

  3. boot-admin整合flowable官方editor-app进行BPMN2.0建模

    正所谓百家争鸣.见仁见智.众说纷纭.各有千秋!在工作流bpmn2.0可视化建模工具实现的细分领域,网上扑面而来的是 bpmn.js 这个渲染工具包和web建模器,而笔者却认为使用flowable官方开 ...

  4. c# 异步进阶———— paralel [二]

    前言 简单整理一下paralel,以上是并行的意思. 正文 我们在工作中常常使用task await 和 async,也就是将线程池进行了封装,那么还有一些更高级的应用. 是对task的封装,那么来看 ...

  5. [双目视差] 立体校正源码分析(opencv)

    文章目录 [双目视差] 立体校正源码分析(opencv) 一.源码解析 二.源码中的方法 [双目视差] 立体校正源码分析(opencv) 一.源码解析 立体校正:把实际中非共面行对准的两幅图像,校正成 ...

  6. [Pytorch框架] 4.1 Fine tuning 模型微调

    文章目录 4.1 Fine tuning 模型微调 4.1.1 什么是微调 为什么要微调 迁移学习 Transfer Learning 二者关系 4.1.2 如何微调 4.1.3 注意事项 4.1.3 ...

  7. DP做题记录

    P1140 相似基因 考虑如何设计状态. 设给出的两个串为串 \(A\) 和串 \(B\),长度分别为 \(n\) 和 \(m\). 我们用 \(f[i][j]\) 来表示前 \(i\) 个 \(A\ ...

  8. Azure DevOps(三)Azure Pipeline 自动化将程序包上传到 Azure Bolb Storage

    一,引言 结合前几篇文章,我们了解到 Azure Pipeline 完美的解决了持续集成,自动编译.同时也兼顾了 Sonarqube 作为代码扫描工具.接下来另外一个问题出现了,Azure DevOp ...

  9. Grafana 系列-统一展示-3-Prometheus 仪表板

    系列文章 Grafana 系列文章 知识储备 Prometheus Template Variables 你可以使用变量来代替硬编码的细节,如 server.app 和 pod_name 在 metr ...

  10. mac 如何快捷键打开当前文件夹对应的终端窗口