【深度学习】基础--NumPy
因为深度学习会应用到我们大学时候学习的数学知识---线性代数。(矩阵当年想起来还是挺有意思的,有考研的经历都有感觉)
而在计算机里面如何展示矩阵的计算和应用,就需要运用到NumPy,是Python的一个外部库。
开始学习一下如何应用Numpy进行数组和矩阵的运算。
1.生成一维数组和计算
import numpy as np
x= np.array([1.0,2.0,3.0])
print(x)
y = np.array([3.0, 6.0, 9.0])
print(x+y)
print(x-y)
演示效果如下:
(zsdpy1) zsd@zsd-virtual-machine:~/ZAI$ python section01.py
[1. 2. 3.]
[ 4. 8. 12.]
[-2. -4. -6.]
2.生成矩阵与计算
生成一个简单的2*2矩阵,并计算两个简单的矩阵
import numpy as np
A= np.array([[1,2],[5,6]])
print(A)
A.shape
B = np.array([[3, 0],[0, 6]])
print(A+B)
演示效果:
(zsdpy1) zsd@zsd-virtual-machine:~/ZAI$ python section02.py
[[1 2]
[5 6]]
[[ 4 2]
[ 5 12]]
其中乘法计算的,就是读书时计算矩阵的方式,图片效果如下:

代码如下:
import numpy as np
A= np.array([[1,2],[5,6]])
B = np.array([10, 20])
print(A)
print(B)
print(A*B)
演示效果:
(zsdpy1) zsd@zsd-virtual-machine:~/ZAI$ python section03.py
[[1 2]
[5 6]]
[10 20]
[[ 10 40]
[ 50 120]]
【深度学习】基础--NumPy的更多相关文章
- 深度学习基础系列(九)| Dropout VS Batch Normalization? 是时候放弃Dropout了
Dropout是过去几年非常流行的正则化技术,可有效防止过拟合的发生.但从深度学习的发展趋势看,Batch Normalizaton(简称BN)正在逐步取代Dropout技术,特别是在卷积层.本文将首 ...
- 深度学习基础系列(五)| 深入理解交叉熵函数及其在tensorflow和keras中的实现
在统计学中,损失函数是一种衡量损失和错误(这种损失与“错误地”估计有关,如费用或者设备的损失)程度的函数.假设某样本的实际输出为a,而预计的输出为y,则y与a之间存在偏差,深度学习的目的即是通过不断地 ...
- [笔记] 基于nvidia/cuda的深度学习基础镜像构建流程 V0.2
之前的[笔记] 基于nvidia/cuda的深度学习基础镜像构建流程已经Out了,以这篇为准. 基于NVidia官方的nvidia/cuda image,构建适用于Deep Learning的基础im ...
- [Pytorch框架] 2.2 深度学习基础及数学原理
文章目录 2.2 深度学习基础及数学原理 2.2.1 监督学习和无监督学习 2.2.2 线性回归 (Linear Regreesion) 2.2.3 损失函数(Loss Function) nn.L1 ...
- 算法工程师<深度学习基础>
<深度学习基础> 卷积神经网络,循环神经网络,LSTM与GRU,梯度消失与梯度爆炸,激活函数,防止过拟合的方法,dropout,batch normalization,各类经典的网络结构, ...
- TensorFlow深度学习基础与应用实战高清视频教程
TensorFlow深度学习基础与应用实战高清视频教程,适合Python C++ C#视觉应用开发者,基于TensorFlow深度学习框架,讲解TensorFlow基础.图像分类.目标检测训练与测试以 ...
- 深度学习基础5:交叉熵损失函数、MSE、CTC损失适用于字识别语音等序列问题、Balanced L1 Loss适用于目标检测
深度学习基础5:交叉熵损失函数.MSE.CTC损失适用于字识别语音等序列问题.Balanced L1 Loss适用于目标检测 1.交叉熵损失函数 在物理学中,"熵"被用来表示热力学 ...
- 深度学习基础-基于Numpy的卷积神经网络(CNN)实现
本文是深度学习入门: 基于Python的实现.神经网络与深度学习(NNDL)以及动手学深度学习的读书笔记.本文将介绍基于Numpy的卷积神经网络(Convolutional Networks,CNN) ...
- 深度学习基础-基于Numpy的多层前馈神经网络(FFN)的构建和反向传播训练
本文是深度学习入门: 基于Python的实现.神经网络与深度学习(NNDL)以及花书的读书笔记.本文将以多分类任务为例,介绍多层的前馈神经网络(Feed Forward Networks,FFN)加上 ...
- 深度学习基础-基于Numpy的感知机Perception构建和训练
1. 感知机模型 感知机Perception是一个线性的分类器,其只适用于线性可分的数据. f(x) = sign(w.x + b) 其试图在所有线性可分超平面构成的假设空间中找 ...
随机推荐
- 操作推荐-git工作流
操作推荐-git工作流 sourcetree环境 sourcetree是一款可视化的版本管理软件 可以实现版本的管理和发布 同样,也支持git工作流的使用 创建git工作流 在main或者master ...
- es通过时间聚合查询一周中每天的数据平均值
场景回顾:设备上传的数据保存在es中,大屏模块要统计本周的数据折线图(一个设备三分总上传一次,所以拟定每天聚合求个平均值) kibana查询请求 GET xxxx_2022-10/_search { ...
- C++移动构造与std::move()
背景及问题 如下程序所示: #include<iostream> class MyString { public: MyString() = default; MyString(const ...
- SQLSERVER 的表分区(水平) 操作记录2
1 ----(非原创只是自己整理记录!!!)---------------原文地址: https://www.cnblogs.com/libingql/category/184251.h ...
- Arm架构下麒麟操作系统安装配置Mariadb数据库
1.安装配置JDK (1)检查机器是否已安装JDK 执行 java -version命令查看机器是否安装JDK,一般麒麟操作系统默认安装openjdk 1.8. (2)安装指定版本JDK 如果麒麟操作 ...
- 基于Traefik如何实现向后转发自动去掉前缀?
前言 Traefik 是一个现代的 HTTP 反向代理和负载均衡器,使部署微服务变得容易. Traefik 可以与现有的多种基础设施组件(Docker.Swarm 模式.Kubernetes.Mara ...
- Android 开发入门(3)
0x05 活动 Activity (1)启停活动页面 a. 启动和结束 从当前页面跳转至新页面 startActivity(new Intent(this, [targetPage].class)) ...
- warmup预热学习率
学习率是神经网络训练中最重要的超参数之一,针对学习率的优化方式很多,Warmup是其中的一种 (一).什么是Warmup?Warmup是在ResNet论文中提到的一种学习率预热的方法,它在训练开始的时 ...
- 8k中英双语文本嵌入模型效果初探
一 模型介绍 向量模型用于生成向量表示,被广泛应用于检索.分类.聚类或语义匹配等传统的自然语言处理任务.到了大模型时代,由于上下文长度的限制,需要压缩.存储和查询大量的信息,这就需要用到向量模型对输入 ...
- Chat2table,简易表格分析助手
一 写在前面 之前用智谱AI的Chatglm3-6b模型写过一个简单的论文阅读助手,可用来辅助论文阅读等.而像表格,如Excel.CSV文件等内容的分析,也是不可忽略的需要,因此本文同样使用Chatg ...