目录

一维DFT

1 DFT的相关内容

  • 一维DFT的意义:一维信号由若干个不同频率的正余弦信号组合而成;
  • 一维DFT的解决问题:确定输入信号中有多少个周期信号,以及周期信号的幅值、频率、相位值;
  • 一维DFT的原理:
    • 通过采样频率fs对原始信号进行离散化,依次计算离散信号与各个基信号的相关性(N为采样点数对应存在N个基信号,每个基信号与离散信号会有一个复数结果)

  • 一维DFT的求取步骤:
    1. 设定采样频率fs,对输入信号f(t)进行采样,得到N个采样点,对应的离散化信号记作x[n],n = [0, 1, ..., N) ;
    2. 通过DFT公式计算得到N个匹配对X[k],k= [0, 1, ..., N),X[k]代表N个采样点的原始信号中存在着k个周期的的信号分量,即第k+1个基信号;
    \[X[k]=Σ_{n=0}^{N-1} x(n){e^{-jA}}=Σ_{n=0}^{N-1} x(n)(cos(A)-jsin(A)), 其中A=2πkn/N.
    \]
    1. 根据 总的采样时长 = N / fs,故对于X[k]≠0时,对应输入信号的 频率 f = (k * fs) / N;在k≠0时,幅值为 复数X[k]的模 除以 (N/2),在k=0时,幅值为 复数X[k]的模 除以 N;相位即为 复数X[k]的幅角;
    2. 注:因为要满足采样定理 fs ≥ 2f,故只使用频率域的前一半结果,由 f = k*fs/N 可推导;
    • 假设,X[2] 的模为不为0, 这说明N个采样点中有2个周期,故 每个周期的时长T =N / (2 ** fs) *,即输入信号的频率 f = (2 * fs) / N;

2 DFT计算结果验证

DFT计算公式:

\[X[k]=Σ_{n=0}^{N-1} x(n){e^{-jA}}=Σ_{n=0}^{N-1} x(n)(cos(A)-jsin(A)), 其中A=2πkn/N.
\]

通过numpy中np.fft.fft() 函数 验证 自己实现的代码是正确的,代码如下

import cmath
import matplotlib.pyplot as plt
import numpy as np plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False np.set_printoptions(edgeitems=3)
arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9])
N = len(arr)
omega = 2 * np.pi / N
mag_ls = []
for k in range(N):
mag_ls.append(sum([arr[j] * cmath.exp(complex(0, -j * omega * k)) for j in range(N)])) print(np.array(mag_ls))
# [45. +0.j -4.5+12.364j -4.5 +5.363j -4.5 +2.598j -4.5 +0.793j
# -4.5 -0.793j -4.5 -2.598j -4.5 -5.363j -4.5-12.364j] X = np.fft.fft(arr)
print(X) # [45. +0.j -4.5+12.364j -4.5 +5.363j -4.5 +2.598j -4.5 +0.793j
# -4.5 -0.793j -4.5 -2.598j -4.5 -5.363j -4.5-12.364j]

3 DFT的时频曲线分析

问题:给定一个连续的输入信号 f(t) = 2 + 3 * np.cos(2 * np.pi * 0.2 * t) + 1.5 * np.cos(2 * np.pi * 0.1 * t) ,通过 DFT 来求解 输入信号中各个周期函数的幅值、频率、相位值;

思路:参考 一维DFT的求取步骤

代码实现:

import matplotlib.pyplot as plt
import numpy as np fs = 0.5 # 采样频率 HZ
t = np.arange(0, 100, 1 / fs) # 时间序列,每隔 1/fs 秒采集一次数据,共采集N次
N = len(t) # 序列的长度
x = 2 + 3 * np.cos(2 * np.pi * 0.2 * t) + 1.5 * np.cos(2 * np.pi * 0.1 * t)
X = np.fft.fft(x)
m = np.abs(X)
Mag = m.copy()
ifft_x = np.fft.ifft(X)
ifft_m = np.abs(ifft_x) freq = [k * fs / N for k in range(N)]
m[0] /= N
m[1:] /= (N / 2)
print("freq:", freq) plt.figure()
name = "f(t) = 2 + 3 * cos(2π * 0.2 * t) + 1.5 * np.cos(2π * 0.1 * t)"
plt.subplot(131), plt.plot(t, x, c="b", marker="o")
plt.title(name), plt.xlabel("采样周期 t={} 秒".format(1/fs)), plt.ylabel("输出f(t)") plt.subplot(132), plt.plot(range(N), Mag, c="g", marker="o"), plt.title("DFT 结果")
plt.title("DFT 结果"), plt.xlabel("基信号N=[0~{})".format(N)), plt.ylabel("基信号对应的幅值") plt.subplot(133), plt.plot(freq, m, c="r", marker="o"), plt.title("DFT 结果")
plt.title("DFT 结果"), plt.xlabel("信号的频率".format(N)), plt.ylabel("真实幅值") plt.figure()
plt.subplot(121), plt.plot(t, x, c="b"), plt.title("原始信号")
plt.subplot(122), plt.plot(t, ifft_m, c="g"), plt.title("逆DFT信号")
plt.show()

输出结果:

由图1可知:

  • fs=0.5hz,采样点 N = 50, f = k * fs / N, 直流分量的幅值 = X[0] 模 / (50),其它分量的幅值 = X[k] 模 / (25) k≠0
  • X[0] 对应输入信号中2,
  • X[10] 对应输入信号中 1.5 * np.cos(2 * np.pi * 0.1 * t) ,
  • X[20] 对应输入信号中 3 * np.cos(2 * np.pi * 0.2 * t)

由图2可知,DFT与IDFT是可逆的

4 DFT的应用

方法:使用DFT求取图像中单个网格的像素大小, psx = 用图像的宽度 除以 x方向上网格的数量,psx = 用图像的高度 除以 y方向上网格的数量;

思路:求解psx — 在x方向上求取图像的像素均值,然后经过DFT变换,得到频域上的周期信号,其中周期个数即为网格数量;为了缩小误差,可以按照一定大小来缩小图像,重复psx 求取过程,通过平均值来提高计算精度;同理 psy一样。

运行结果:

二维DFT

1 DFT在图像处理时的相关内容

  • 图像中高频与低频区别:

    • 高频:变化剧烈的灰度分量,例如边界
    • 低频:变化缓慢的灰度分量,例如一片大海
  • 傅里叶变换的作用:滤波、图像配准;
    • 低通滤波器:只保留低频,会使得图像模糊
    • 高通滤波器:只保留高频,会使得图像细节增强

2 DFT滤波应用

import cv2
import numpy as np
from matplotlib import pyplot as plt def DFT(image, isshow=True):
img_float32 = np.float32(image) dft = cv2.dft(img_float32, flags=cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)
# 得到灰度图能表示的形式
magnitude_spectrum = 20 * np.log(cv2.magnitude(dft_shift[:, :, 0], dft_shift[:, :, 1])) if isshow:
plt.subplot(121), plt.imshow(image, cmap='gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(magnitude_spectrum, cmap='gray')
plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])
plt.show() return dft_shift def IDFT(image, dft_shift, Filtter="None", isshow=True):
if Filtter:
rows, cols = img.shape
crow, ccol = int(rows / 2), int(cols / 2) # 中心位置
mask = None
if Filtter == "HIGH":
# 高通滤波
mask = np.ones((rows, cols, 2), np.uint8)
mask[crow - 30:crow + 30, ccol - 30:ccol + 30] = 0
elif Filtter == "LOW":
# 低通滤波
mask = np.zeros((rows, cols, 2), np.uint8)
mask[crow - 30:crow + 30, ccol - 30:ccol + 30] = 1
dft_shift = dft_shift * mask f_ishift = np.fft.ifftshift(dft_shift)
img_back = cv2.idft(f_ishift)
img_back = cv2.magnitude(img_back[:, :, 0], img_back[:, :, 1]) if isshow:
plt.subplot(121), plt.imshow(image, cmap='gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(img_back, cmap='gray')
plt.title('Result'), plt.xticks([]), plt.yticks([])
plt.show() return img_back if __name__ == "__main__":
img = cv2.imread('lena.jpg', 0)
fshift = DFT(img)
IDFT(img, fshift, Filtter="LOW")

运行结果:

离散傅里叶变换DFT的应用的更多相关文章

  1. 灰度图像--频域滤波 傅里叶变换之离散傅里叶变换(DFT)

    学习DIP第23天 转载请标明本文出处:http://blog.csdn.net/tonyshengtan,欢迎大家转载,发现博客被某些论坛转载后,图像无法正常显示,无法正常表达本人观点,对此表示很不 ...

  2. 【转】离散傅里叶变换-DFT(FFT)基础

    转:https://blog.csdn.net/zhangxz259/article/details/81627341 什么是离散傅里叶变换 matlab例子 本文是从最基础的知识开始讲解,力求用最通 ...

  3. 离散傅里叶变换DFT入门

    网上对于傅里叶变换相关的文章很多(足够多),有的是从物理相关角度入场,有的从数学分析角度入场.对于有志学习相关概念的同学还是能够很好的理解的. 数学包括三大块:代数学.几何.数学分析.前两块我们在中学 ...

  4. 用matlab脚本语言写M文件函数时用三种方法简单实现实现DFT(离散傅里叶变换)

    %用二重循环实现DFT: function xk=dt_0(xn); %define a function N=length(xn); %caculate the length of the vari ...

  5. c语言数字图像处理(六):二维离散傅里叶变换

    基础知识 复数表示 C = R + jI 极坐标:C = |C|(cosθ + jsinθ) 欧拉公式:C = |C|ejθ 有关更多的时域与复频域的知识可以学习复变函数与积分变换,本篇文章只给出DF ...

  6. opencv 3 core组件进阶(3 离散傅里叶变换;输入输出XML和YAML文件)

    离散傅里叶变换 #include "opencv2/core/core.hpp" #include "opencv2/imgproc/imgproc.hpp" ...

  7. OpenCV离散傅里叶变换

    离散傅里叶变换 作用:得到图像中几何结构信息 结论:傅里叶变换后的白色部分(即幅度较大的低频部分),表示的是图像中慢变化的特性,或者说是灰度变化缓慢的特性(低频部分). 傅里叶变换后的黑色部分(即幅度 ...

  8. 离散傅里叶变换(DFT)

    目录     一.研究的意义     二.DFT的定义    三.DFT与傅里叶变换和Z变换的关系     四.DFT的周期性     五.matlab实验       五.1 程序         ...

  9. Opencv 实现图像的离散傅里叶变换(DFT)、卷积运算(相关滤波)

    我是做Tracking 的,对于速度要求非常高.发现傅里叶变换能够使用. 于是学习之. 核心: 最根本的一点就是将时域内的信号转移到频域里面.这样时域里的卷积能够转换为频域内的乘积! 在分析图像信号的 ...

  10. 【算法•日更•第四十二期】离散傅里叶变换(DFT)

    ▎前言 小编相当的菜,这篇博客难度稍高,所以有些可能不会带有证明,博客中更多的是定义. 我们将要学到的东西: 复数 暴力多项式乘法 DFT 当然,小编之前就已经写过一篇博客了,主要讲的就是基础多项式, ...

随机推荐

  1. R2在全渠道业务线的落地

    随着业务的增长,系统的高频率迭代,质量保障工作迫切需要引入更加科学高效的测试方法来助力业务高质量的交付.长城项目一期测试中,全渠道质量团队引入技术平台部R2技术,极大的提升了项目交付的质量.因此,本文 ...

  2. 【技术积累】Linux中的命令行【理论篇】【八】

    basename命令 命令介绍 在Linux中,basename命令用于从给定的路径中提取文件名或目录名.它的语法如下: basename [选项] [路径] 命令介绍 选项:-s, --suffix ...

  3. *CTF和nssctf#16的wp

    *ctf2023 fcalc 分析程序 本题存在漏洞,是生活中很容易犯的错误,就是循环或者判断的时候没有注意多一还是少一,这种会发生很严重的问题.比如这个题在过滤数字的时候没有过滤掉0,所以输入0的时 ...

  4. vlak

    2023-7-14 题目 luogu题目传送门 题目描述 Nina 和 Emilija 正在玩一个特殊的游戏.这个游戏是在一张最开始为空白的纸上进行的.在每一个人的行动回合内,这个人会在这张纸上当前的 ...

  5. Qt开发思想探幽]QObject、模板继承和多继承

    @ 目录 [Qt开发探幽]QObject.模板继承和多继承 1. QObject为什么不允许模板继承: 2.如果需要使用QObject进行多继承的话,子对象引用的父类链至多只能含有一个QObject ...

  6. Pycharm包推荐|自动检查shell脚本问题的包

    如图,这个包自动会检测出哪块代码编写有问题,自动提示,这里可以根据提示进行修改,快速高效!!! 包的名字如图:Shell script formatter 太香了

  7. 特斯拉Dojo超算:AI训练平台的自动驾驶与通用人工智能之关键

    特斯拉公开Dojo超算架构细节,AI训练算力平台成为其自动驾驶与通用人工智能布局的关键一环 在近日举行的Hot Chips 34会议上,特斯拉披露了其自主研发的AI超算Dojo的详细信息.Dojo是一 ...

  8. 织梦tag怎么显示每个tag相应的文章数量

    有些时候我们想实现类似于wordpress那样的tag,就是在显示tag的链接和tag名的同时,还能显示每个tag关联的文章的数量.如下图所示: 这就需要修改/include/taglib/tag.l ...

  9. 给网站添加xml地图索引写法和应用

    使用php给网站添加xml地图索引写法 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 ...

  10. Linux系列教程——Shell、Linux文件管理

    文章目录 Shell 1.什么是Bash shell(壳) 2.Bash Shell能干什么? 3.平时我们如何使用Shell呢? 4.Shell提示符 5.Shell基础语法 2.Bash Shel ...