题目

\[\large {\sum_{i=0}^n[k|i]C(n,i)}\pmod {998244353}
\]

其中\(n\leq 10^{18}\),\(k=2^p,p\in [0,20]\)


分析

主要是\(k\)条件比较难想,但是貌似有点像NTT的原根,

而且这个组合数也难求,二项式定理是一个将组合数转换为一个快速幂的定理

主要是没写过单位根反演,直接推式子算了

单位根有一个很重要的性质就是

\[\large[n|k]=\frac{1}{n}\sum_{i=0}^{n-1}\omega^{ik}_n
\]

然后这个式子就可以写成

\[\large=\frac{1}{k}\sum_{i=0}^n\sum_{j=0}^{k-1}\omega^{ij}_kC(n,i)
\]

考虑把有关\(i\)的部分丢进里面,那就是

\[\large=\frac{1}{k}\sum_{j=0}^{k-1}\sum_{i=0}^n(\omega^j_k)^{i}C(n,i)
\]

观察到后面直接套用二项式定理就是

\[\large=\frac{1}{k}\sum_{j=0}^{k-1}(\omega^j_k+1)^n
\]

直接\(O(klog_2n)\)求就可以了


upd:补充一条性质

如果要计算某个多项式特定倍数的系数和,

也就是 \(\large \sum_{i=0}^{\lfloor\frac{n}{k}\rfloor}[x^{ik}]f(x)\)

转换一下就是 \(\large \sum_{i=0}^n[k|i][x^i]f(x)\)

单位根反演一下得到 \(\large \frac{1}{k}\sum_{j=0}^{k-1}\sum_{i=0}^n[x^i]f(x)\omega^{ji}_k\)

也就是 \(\large \frac{1}{k}\sum_{j=0}^{k-1}\sum_{i=0}^na_i(\omega^j_k)^i=\frac{1}{k}\sum_{j=0}^{k-1}f(\omega^j_k)\)


代码

#include <cstdio>
#define rr register
using namespace std;
typedef long long lll;
const lll mod=998244353;
lll n,k,omega,ans;
inline lll ksm(lll x,lll y){
rr lll ans=1;
for (;y;y>>=1,x=x*x%mod)
if (y&1) ans=ans*x%mod;
return ans;
}
signed main(){
scanf("%lld%lld",&n,&k);
omega=ksm(3,(mod-1)/k);
for (rr lll i=0,t=1;i<k;++i)
ans+=ksm(t+1,n),t=t*omega%mod;
return !printf("%lld",ans%mod*ksm(k,mod-2)%mod);
}

#单位根反演,二项式定理#LOJ 6247 九个太阳的更多相关文章

  1. loj #6247. 九个太阳 k次单位根 神仙构造 FFT求和原理

    LINK:九个太阳 不可做系列. 构造比较神仙. 考虑FFT的求和原理有 \(\frac{1}{k}\sum_{j=0}^{k-1}(w_k^j)^n=[k|n]\) 带入这道题的式子. 有\(\su ...

  2. loj #6247. 九个太阳

    求 $\sum\limits_{i=1}^n [k | i] \times C_n^i$ 膜 $998244353$ $n \leq 10^{15},k \leq 2^{20}$ $k$ 是 $2$ ...

  3. Loj#6247-九个太阳【单位根反演】

    正题 题目链接:https://loj.ac/p/6247 题目大意 给出\(n,k\)求 \[\sum_{0\leq i\leq n,i|k}\binom{n}{i} \] 对\(998244353 ...

  4. loj 6485 LJJ学二项式定理 —— 单位根反演

    题目:https://loj.ac/problem/6485 先把 \( a_{i mod 4} \) 处理掉,其实就是 \( \sum\limits_{i=0}^{3} a_{i} \sum\lim ...

  5. 【LOJ#6485】LJJ 学二项式定理(单位根反演)

    [LOJ#6485]LJJ 学二项式定理(单位根反演) 题面 LOJ 题解 显然对于\(a0,a1,a2,a3\)分开算答案. 这里以\(a0\)为例 \[\begin{aligned} Ans&am ...

  6. loj#6485. LJJ 学二项式定理(单位根反演)

    题面 传送门 题解 首先你要知道一个叫做单位根反演的东西 \[{1\over k}\sum_{i=0}^{k-1}\omega^{in}_k=[k|n]\] 直接用等比数列求和就可以证明了 而且在模\ ...

  7. [LOJ 6485]LJJ学二项式定理(单位根反演)

    也许更好的阅读体验 \(\mathcal{Description}\) 原题链接 \(T\)组询问,每次给\(n,s,a_0,a_1,a_2,a_3\)求 \(\begin{aligned}\left ...

  8. 数学杂烩总结(多项式/形式幂级数+FWT+特征多项式+生成函数+斯特林数+二次剩余+单位根反演+置换群)

    数学杂烩总结(多项式/形式幂级数+FWT+特征多项式+生成函数+斯特林数+二次剩余+单位根反演+置换群) 因为不会做目录所以请善用ctrl+F 本来想的是笔记之类的,写着写着就变成了资源整理 一些有的 ...

  9. Note -「单位根反演」学习笔记

    \(\mathcal{Preface}\)   单位根反演,顾名思义就是用单位根变换一类式子的形式.有关单位根的基本概念可见我的这篇博客. \(\mathcal{Formula}\)   单位根反演的 ...

  10. BZOJ3328 PYXFIB 单位根反演

    题意:求 \[ \sum_{i=0}^n[k|i]\binom{n}{i}Fib(i) \] 斐波那契数列有简单的矩阵上的通项公式\(Fib(n)=A^n_{1,1}\).代入得 \[ =\sum_{ ...

随机推荐

  1. RK3568开发笔记(二):入手RK3568开发板的套件介绍、底板介绍和外设测试

    前言   本篇主要介绍RK3568芯片和入手开发板的底板介绍以及开发板的外设.   开发板   笔者的开发板是全套+10.1寸屏. 开发板实物     开发板资源    开发版本提供资料     开发 ...

  2. 基于java的图书管理系统

    基于java的图书管理系统 项目概述 使用数组存储数据实现一个图书管理系统,完成的功能有增加图书.删除图书.更新图书.查询图书.图书列表.增删改查 登陆注册 首页 图书更新 图书列表 开发工具/技术 ...

  3. 【Docker】.Net Core 结合Nlog集成ELK框架(Elasticsearch , Logstash, Kibana) (五)

    之前有项目有用过ELK做过日志架构,不过是非docker形式安装的,今天来探究一下ELK的容器化技术 Elasticsearch 是个开源分布式搜索引擎,它的特点有:分布式,零配置,自动发现,索引自动 ...

  4. dotnet nuget的命令行上传(推送/发布)包到Nexus 3

    1.让Visual Studio在生成的时候也生成NuGet的包 在项目上点右键,选"属性",然后设置生成的时候制作NuGet的包. 英文版在这里打勾: 中文版在这里打勾: 重新生 ...

  5. 【Azure 应用服务】Azure Data Factory中调用Function App遇见403 - Forbidden

    问题描述 在Azure Data Factory (数据工厂)中,调用同在Azure中的Function App函数,却出现403 - Forbidden错误. 截图如下: 问题解答 访问Azure ...

  6. linux 命令行使用codeql

    目录 CodeQL 概述 安装 直接使用在线查询(lgtm) vscode使用codeql 下载 库文件 测试 linux控制台运行 下载 安装 创建数据库 编写QL查询数据库 简单解释 CodeQL ...

  7. C++ auto与循环

    C++ auto与循环 C++ auto 的介绍 typeid(p).name();可以输出auto的类型 auto 是 C++11 引入的一个关键字,用于自动类型推导.编译器会根据初始化表达式的类型 ...

  8. C++ 函数指针,指针函数,左值右值

    C++ 函数指针,指针函数,左值右值 1.函数指针 是一个指针类型的变量,存放的内容都是函数的指针,用来间接调用函数,格式如下: int add( int a, int b) { return a+b ...

  9. 深入解析:AntSK 0.1.7版本的技术革新与多模型管理策略

    在信息技术快速迭代的当下,.Net生态中的AntSK项目凭借其前沿的AI知识库和智能体技术,已经吸引了广大开发者的关注和参与.今天,我要给大家介绍的主角,AntSK 0.1.7版本,无疑将是这个开源项 ...

  10. mainWindow = new BrowserWindow 打开慢的原因 electron 已解决 Windows Defender 拦截导致

    Windows Defender 导致拦截 不是变量的事儿 解决方案: win10 开始 设置 - windows 安全中心 - 病毒和威胁防护 - 病毒和威胁防护设置 - 排除项 - 添加排除项 将 ...