c# 验证码的识别主要分为预处理、分割、识别三个步骤

首先我从网站上下载验证码

处理结果如下:

1.图片预处理,即二值化图片

*就是将图像上的像素点的灰度值设置为0或255。

原理如下:

代码如下:

#region 二值化图片
/// <summary>
/// 二值化图片
/// 就是将图像上的像素点的灰度值设置为0或255
/// </summary>
/// <returns>处理后的验证码</returns>
public Bitmap BinaryZaTion()
{
for (int x = 0; x < img.Width; x++)
{
for (int y = 0; y < img.Height; y++)
{
__c = img.GetPixel(x, y);
//灰度值
int __tc = (__c.R + __c.G + __c.B) / 3;
//大于阙值 黑色
if (__tc > t)
{
img.SetPixel(x, y, Color.FromArgb(__c.A, b, b, b));
//黑色点个数自加
__blackNum++;
}
//大于阙值 白色
else
{
img.SetPixel(x, y, Color.FromArgb(__c.A, w, w, w));
}
}
}
return img;
}
#endregion

二值化过后需要判断图片的黑白比列,若果黑色比白色多,需要对图片反色处理。

代码如下:

 #region 是否需要反色
/// <summary>
/// 是否需要反色
/// </summary>
/// <returns>是否需要反色</returns>
public bool IsNeedInverseColor()
{
if ((__blackNum * 1.0 / (img.Width * img.Height)) > 0.5)
{
return true;
}
else
{
return false;
}
}
#endregion #region 反色
/// <summary>
/// 反色
/// </summary>
/// <returns>处理后的验证码</returns>
public Bitmap InverseColor()
{
for (int x = 0; x < img.Width; x++)
{
for (int y = 0; y < img.Height; y++)
{
__c = img.GetPixel(x, y);
img.SetPixel(x, y, Color.FromArgb(__c.A, w - __c.R, w - __c.G, w - __c.B));
}
}
return img;
}
#endregion

处理结果如下:

2.图片分割

我的做法是先每一竖行判断是否是纯白色行,不是的话记录当前x坐标,然后没以横行判断是否纯白色行,这样就能的到每一个数字的区域,然后将区域画出来。

代码如下:

 #region 分割图片
/// <summary>
/// 分割图片
/// </summary>
/// <returns>处理后的验证码</returns>
public Bitmap CutImg()
{
//Y轴分割
CutY();
//区域个数
__count = 0;
if (XList.Count > 1)
{
//x起始值
int __start = XList[0];
//x结束值
int __end = XList[XList.Count - 1];
//x索引
int __idx = 0;
while (__start != __end)
{
//区域宽度
int __w = __start;
//区域个数自加
__count++;
while (XList.Contains(__w) && __idx < XList.Count)
{
//区域宽度自加
__w++;
//x索引自加
__idx++;
}
//区域X轴坐标
int x = __start;
//区域Y轴坐标
int y = 0;
//区域宽度
int width = __w - __start;
//区域高度
int height = img.Height;
/*
* X轴分割当前区域
*/
CutX(img.Clone(new Rectangle(x, y, width, height), img.PixelFormat));
if (YList.Count > 1 && YList.Count != img.Height)
{
int y1 = YList[0];
int y2 = YList[YList.Count - 1];
if (y1 != 1)
{
y = y1 - 1;
}
height = y2 - y1 + 1;
}
//GDI+绘图对象
Graphics g = Graphics.FromImage(img);
g.SmoothingMode = SmoothingMode.HighQuality;
g.CompositingMode = CompositingMode.SourceOver;
g.PixelOffsetMode = PixelOffsetMode.HighSpeed;
g.InterpolationMode = InterpolationMode.HighQualityBicubic;
//画出验证码区域
g.DrawRectangle(new Pen(Brushes.Green), new Rectangle(x, y, width, height));
g.Dispose();
//起始值指向下一组
if (__idx < XList.Count)
{
__start = XList[__idx];
}
else
{
__start = __end;
} }
}
return img;
}
#endregion #region Y轴字符分割图片
/// <summary>
/// 得到Y轴分割点
/// 判断每一竖行是否有黑色
/// 有则添加
/// </summary>
/// <param name="img">要验证的图片</param>
private void CutY()
{
XList.Clear();
for (int x = 0; x < img.Width; x++)
{
isWhilteLine = false;
for (int y = 0; y < img.Height; y++)
{
__c = img.GetPixel(x, y);
if (__c.R == w)
{
isWhilteLine = true;
}
else
{
isWhilteLine = false;
break;
}
}
if (!isWhilteLine)
{
XList.Add(x);
}
}
}
#endregion #region X轴字符分割图片
/// <summary>
/// 得到X轴分割点
/// 判断每一横行是否有黑色
/// 有则添加
/// </summary>
/// <param name="tempImg">临时区域</param>
private void CutX(Bitmap tempImg)
{
YList.Clear();
for (int x = 0; x < tempImg.Height; x++)
{
isWhilteLine = false;
for (int y = 0; y < tempImg.Width; y++)
{
__c = tempImg.GetPixel(y, x);
if (__c.R == w)
{
isWhilteLine = true;
}
else
{
isWhilteLine = false;
break;
}
}
if (!isWhilteLine)
{
YList.Add(x);
}
}
tempImg.Dispose();
}
#endregion

效果如下:

3.识别

识别呢就是提取出图片的特征

我的做法是将图片数字区域逐一分成4*4的区域,计算出各个区域的黑色点所占的百分比,然后将计算出来的结果和以前计算的特征进行比较,求出欧氏距离 d = sqrt( (x1-x2)^2+(y1-y2)^2 )最小的一个作为结果。

部分代码如下:

#region 黑色像素比列
/// <summary>
/// 计算黑色像素比列
/// </summary>
/// <param name="tempimg"></param>
/// <returns></returns>
private double PixlPercent(Bitmap tempimg)
{
int temp = 0;
int w_h = tempimg.Width * tempimg.Height;
for (int x = 0; x < tempimg.Width; x++)
{
for (int y = 0; y < tempimg.Height; y++)
{
__c = tempimg.GetPixel(x, y);
if (__c.R == b)
{
temp++;
}
}
}
tempimg.Dispose();
double result = temp * 1.0 / w_h;
result = result.ToString().Length > 3 ? Convert.ToDouble(result.ToString().Substring(0, 3)) : result;
return result;
}
#endregion

效果如下:

本代码只做研究学习之用。

新手上路,有任何建议、意见联系 pigkeli@qq.com 。

[置顶] c#验证码识别、图片二值化、分割、分类、识别的更多相关文章

  1. python图片二值化提高识别率

    import cv2from PIL import Imagefrom pytesseract import pytesseractfrom PIL import ImageEnhanceimport ...

  2. C#图片灰度处理(位深度24→位深度8)、C#图片二值化处理(位深度8→位深度1)

    C#图片灰度处理(位深度24→位深度8) #region 灰度处理 /// <summary> /// 将源图像灰度化,并转化为8位灰度图像. /// </summary> / ...

  3. 机器学习进阶-项目实战-信用卡数字识别 1.cv2.findContour(找出轮廓) 2.cv2.boudingRect(轮廓外接矩阵位置) 3.cv2.threshold(图片二值化操作) 4.cv2.MORPH_TOPHAT(礼帽运算突出线条) 5.cv2.MORPH_CLOSE(闭运算图片内部膨胀) 6. cv2.resize(改变图像大小) 7.cv2.putText(在图片上放上文本)

    7. cv2.putText(img, text, loc, text_font, font_scale, color, linestick) # 参数说明:img表示输入图片,text表示需要填写的 ...

  4. 验证码图片二值化问题 BitmapData 怎么解决

    对不起,这算是一篇求助啦,先上图,防止不清楚,放大了一点,下面是图片,上面是没有二值化的,下面是二值化之后的,我其实不懂什么是二值化啦,就是一定范围变黑,变白 问题: 为什么我的结果上面还是有很多彩色 ...

  5. c#实现图片二值化例子(黑白效果)

    C#将图片2值化示例代码,原图及二值化后的图片如下: 原图: 二值化后的图像: 实现代码: ? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 2 ...

  6. OpenCV - 图片二值化,计算白色像素点的个数

    直接上代码吧: import cv2 import numpy as np from PIL import Image area = def getWhitePixel(img): global ar ...

  7. python的N个小功能(图片预处理:打开图片,滤波器,增强,灰度图转换,去噪,二值化,切割,保存)

    ############################################################################################# ###### ...

  8. 基于Java对图片进行二值化处理

    一直以来对Java的图形处理能力表无力,但好像又不是那么一回事,之前用PHP做过一些应用,涉及到验证码的识别,其中有个图片二值化的步骤,今天换成Java来实现下 在java的扩展包javax.imag ...

  9. 二值化方法:Kittler:Minimum Error Thresholding

    Kittler二值化方法,是一种经典的基于直方图的二值化方法.由J. Kittler在1986年发表的论文“Minimum Error Thresholding”提出.论文是对贝叶斯最小错误阈值的准则 ...

随机推荐

  1. 字符串-06. IP地址转换(20)

    #include<iostream> #include<string> #include<cmath> using namespace std; int main( ...

  2. Qt中的对象类型转换(Qstring 转换char*有三种方法)

    char * 与 const char *的转换 char *ch1="hello11"; const char *ch2="hello22"; ch2 = c ...

  3. Android Camera调用过程分析

    源代码版本:allwinner 4.0.4 frameworks代码: frameworks/base/core/java/android/hardware/Camera.java JNI层代码: f ...

  4. fedora21安装无线驱动

    来源:http://www.2cto.com/os/201202/120249.html 一.导入rpmfushion源,使用第三方yum 源: su -c 'yum localinstall --n ...

  5. Linux编程---I/O部分

    非常多函数都能够在网上找到,也比較基础,所以原型仅仅给出了函数名.详细用到再man吧. 输入输出是个非常重要的一块内容.差点儿网络相关的东西基本都是靠底层IO调用来实现的. 好吧.还是先踏踏实实的介绍 ...

  6. VS插件开发——格式化变量定义语句块

    插件介绍 代码地址:https://github.com/sun2043430/vs2008_format_variable_define_plugin/ 在vs里,对选中的变量定义块进行格式化,效果 ...

  7. iReport5.6.0 linechart 制作方法

    iReport 官网和文档上关于chart设计以饼图和JDBC源作为样例.但很多其它的情况下因为报表中的数据须要首先加工处理,因此很多其它的是从JavaBeans set datasource从获取数 ...

  8. word排版的一些小技巧积累

    先准备好样式 编辑前,可以先根据要求,设置好样式,可以免去编辑好后,再修改格式(这样要改好多文本的格式) docx doc的样式不能通用. .docx转.doc 从word2013自带的编辑公式,编辑 ...

  9. PyQt中如何隐藏Menu

    PyQt中隐藏一个Menu Item,可以通过QAction的setVisible(False)来设置,而QMenu的setVisible(False)是不管用的. 现在问题来了,我们有一个菜单,它有 ...

  10. Pascal Analyzer 4 代码分析使用简要说明

    概述 不管在那个开发团队中每个人的编写风格往往是千差万别能力也有高低,如何让别人快速看懂自己的代码维护你的代码.尽量避免不必要的简单错误,为编写代码作一定的约束是必不可少的.如果你说我一个人不需要规范 ...