tyvj 1049 最长不下降子序列 n^2/nlogn
描述
输入格式
第二行n个数
输出格式
测试样例1
输入
3
1 2 3
输出
3
备注
for each num <=maxint
/******************************
code by drizzle
blog: www.cnblogs.com/hsd-/
^ ^ ^ ^
O O
******************************/
//#include<bits/stdc++.h>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<map>
#include<algorithm>
#include<cmath>
#define ll long long
#define PI acos(-1.0)
#define mod 1000000007
using namespace std;
int n;
int a[];
int dp[];
int main()
{
while(~scanf("%d",&n)){
memset(dp,,sizeof(dp));
for(int i=;i<=n;i++)
{
scanf("%d",&a[i]);
dp[i]=;
}
int maxn=;
int ans=;
for(int i=;i<=n;i++)
{
maxn=;
for(int j=;j<i;j++)
{
if(a[j]<=a[i]&&dp[j]+>maxn)
maxn=dp[j]+;
}
dp[i]=maxn;
ans=max(ans,maxn);
}
cout<<ans;
}
return ;
}
nlogn 使用upper_bound 与最长上升子序列不同 注意边界判断
ans[i] 表示长度为i的最长的不下降的最后一位的值
/******************************
code by drizzle
blog: www.cnblogs.com/hsd-/
^ ^ ^ ^
O O
******************************/
//#include<bits/stdc++.h>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<map>
#include<algorithm>
#include<cmath>
#define ll long long
#define PI acos(-1.0)
#define mod 1000000007
using namespace std;
int n;
int a[];
int main()
{
while(~scanf("%d",&n)){
memset(dp,,sizeof(dp));
for(int i=;i<n;i++)
scanf("%d",&a[i]);
int maxn=;
int ans[];
int top=;
ans[]=a[];
for(int i=;i<n;i++)
{
if(a[i]>=ans[top])
ans[++top]=a[i];
else
{
int pos=upper_bound(ans,ans+top,a[i])-ans;//指向大于a[i]的第一个元素的位置
ans[pos]=a[i];//更新
}
}
cout<<top<<endl;;
}
return ;
}
tyvj 1049 最长不下降子序列 n^2/nlogn的更多相关文章
- [TYVJ] P1049 最长不下降子序列
最长不下降子序列 描述 Description 求最长不下降子序列的长度 输入格式 InputFormat 第一行为n,表示n个数第二行n个数 输出格式 OutputFormat 最长不下降子 ...
- 【tyvj】P1049 最长不下降子序列
时间: 1000ms / 空间: 131072KiB / Java类名: Main 描述 求最长不下降子序列的长度 输入格式 第一行为n,表示n个数 第二行n个数 输出格式 最长不下降子序列的长度 测 ...
- 最长不下降子序列(LIS)
最长上升子序列.最长不下降子序列,解法差不多,就一点等于不等于的差别,我这里说最长不下降子序列的. 有两种解法. 一种是DP,很容易想到,就这样: REP(i,n) { f[i]=; FOR(j,,i ...
- 最长不下降子序列 O(nlogn) || 记忆化搜索
#include<stdio.h> ] , temp[] ; int n , top ; int binary_search (int x) { ; int last = top ; in ...
- 最长不下降子序列的O(n^2)算法和O(nlogn)算法
一.简单的O(n^2)的算法 很容易想到用动态规划做.设lis[]用于保存第1~i元素元素中最长不下降序列的长度,则lis[i]=max(lis[j])+1,且num[i]>num[j],i&g ...
- 最长不下降子序列//序列dp
最长不下降子序列 时间: 1000ms / 空间: 131072KiB / Java类名: Main 描述 求最长不下降子序列的长度 输入格式 第一行为n,表示n个数第二行n个数 输出格式 最长不下降 ...
- hdu 4604 Deque(最长不下降子序列)
从后向前对已搜点做两遍LIS(最长不下降子序列),分别求出已搜点的最长递增.递减子序列长度.这样一直搜到第一个点,就得到了整个序列的最长递增.递减子序列的长度,即最长递减子序列在前,最长递增子序列在后 ...
- 最长不下降子序列nlogn算法详解
今天花了很长时间终于弄懂了这个算法……毕竟找一个好的讲解真的太难了,所以励志我要自己写一个好的讲解QAQ 这篇文章是在懂了这个问题n^2解决方案的基础上学习. 解决的问题:给定一个序列,求最长不下降子 ...
- SPOJ 4053 - Card Sorting 最长不下降子序列
我们的男主现在手中有n*c张牌,其中有c(<=4)种颜色,每种颜色有n(<=100)张,现在他要排序,首先把相同的颜色的牌放在一起,颜色相同的按照序号从小到大排序.现在他想要让牌的移动次数 ...
随机推荐
- IBatis.net 输出SQL语句(七)
一.IBatis.net输出SQL语句到控制台 输出IBatis.net生成的SQL语句到控制台,能够方便调试. 如果要想输出IBatis.net的SQL语句到控制台,那么只需要做如下配置即可: &l ...
- wdcp升级php版本到5.3,5.5
官网省级方法 wget http://down.wdlinux.cn/in/php_up53.shsh php_up53.sh 看到"php update is OK"提示表示,顺 ...
- websocket++编译过程
websocket++ 是一个开源 websocket 库,使用websocket++ 能够开发基于websocket 服务. 前一段时间成功编译 websocket++ ,分享一下,编译websoc ...
- No module ata_piix found的解决方法
在一台as4u6的机器上升级内核到2.6.18时,最好make install的时候报了一个WARNING: No module ata_piix found for 2.6.18, 开始没有在意,重 ...
- JNI与NDK简介
最近稍微了解一下JNI和NDK. 网上各种教程给人一种二者不分的感觉, 经过自己运行代码, 将两者的关系理了一下. 就目前了解,JNI应该是java自带的一种调用c和c++等语言(native cod ...
- touch ImageView
package com.example.touchdemo; import android.os.Bundle;import android.app.Activity;import android.u ...
- 【PyQt5】学习笔记(1)
# -*- coding: utf-8 -*- from PyQt5 import QtWidgets,QtCore #从pyqt库导入QtWindget通用窗口类 from formnew impo ...
- 理解Mach Port
参考文档: 1. http://robert.sesek.com/thoughts/2012/1/debugging_mach_ports.html 2. Mach 3 Kernel Interfac ...
- jQuery tab plugin
/* www.keleyi.com/ */ ; (function ($) { $.fn.extend({ Tabs: function (options) { // 处理参数 options = $ ...
- classPath
问 spring mvc的web.xml中这个地方的classpath是什么意思? spring springmvc java swnuv 2015年09月25日提问 关注 5 关注 收藏 0 收藏, ...