Kruskal
算法描述:克鲁斯卡尔算法需要对图的边进行访问,所以克鲁斯卡尔算法的时间复杂度只和边又关系,可以证明其时间复杂度为O(eloge)。
算法过程:
1.将图各边按照权值进行排序
2找出权值最小的边,(条件:判断是否形成环),若不形成环(即更不相同),则加入最小生成树的集合中。不符合条件,寻找下一个最小权值的边。
3.递归重复步骤1,直到找出n-1条边为止(设图有n个结点,则最小生成树的边数应为n-1条),算法结束。得到的就是此图的最小生成树。
克鲁斯卡尔(Kruskal)算法因为只与边相关,则适合求稀疏图的最小生成树。而prime算法因为只与顶点有关,所以适合求稠密图的最小生成树。

《转自红黑联盟》
并查集 kruskal 的优化
先初始化 father [MAXX];
在进行赋值 ;
int unionsearch(int x)
{
return x==father[x]?x:unionsearch(father[x]);
}
int fa = unionsearch(edge[i].a);
int fb = unionsearch(edge[i].b);
if(fa !=fb)
{
father[fb] = fa;
cout<<edge[i].a<<" "<<edge[i].b<<endl;
}
#include <iostream>
using namespace std;
const int SIZE = ;
struct Node
{
int start;
int over;
int len;
};
int father[SIZE]; int Cmp(const void *a, const void *b)
{ return (*(Node *)a).len > (*(Node *)b).len ? : -; } int Find(int n)
{
while(n != father[n])
n = father[n];
return n;
} int main()
{
Node arr[];
int n, edge, i, sum, num, fa, fb;
cout << "请输入节点的数目:";
cin >> n;
for(i=;i<=n;i++)
father[i] = i;
edge = n * (n-) / ;
cout << "请输入" << edge << "条路的起点,终点,距离:(假设每两个结点之间都直接连通)\n";
for(i=;i<edge;i++)
cin >> arr[i].start >> arr[i].over >> arr[i].len;
qsort(arr, edge, sizeof(arr[]), Cmp);
sum = ;
num = ;
for(i=;i<edge;i++)
{
if(num >= n)
break;
fa = arr[i].start;
fb = arr[i].over;
fa = Find(fa);
fb = Find(fb);
if(fa != fb)
{
sum += arr[i].len;
num++;
if(fa < fb) //这里
father[fb] = fa;
else
father[fa] = fb;
}
}
cout << "最小生成树的总长度是: " << sum << endl;
return ;
}
在Kruskal 算法中 把
if(fa < fb)
father[fb] = fa;
else
father[fa] = fb;
换成
father[fa] = fb 也应该没有问题 在 father 数组中起到的是 连通性的作用 通过 递归 找到root ,root相同形成一个环
因此 fa== fb
#include <iostream>
#include <string.h>
#include <stdio.h>
#include <string>
#include <algorithm>
const int MAX = ;
using namespace std;
struct Kruskal
{
int a;
int b;
int value;
};
int v, l;
int father[MAX];
bool cmp(const Kruskal& a,const Kruskal&b)
{
return a.value < b.value;
}
int unionsearch(int x) //查找根结点+路径压缩
{
return x == father[x] ? x : unionsearch(father[x]);
} bool join(int x,int y)
{
int root1 = unionsearch(x);
int root2 = unionsearch(y);
if(root1 == root2)
{
return false;
}
else
{
father[root1] = root2;
}
return true;
}
int main()
{
int ncase,ltotal,sum;
bool flag;
Kruskal edge[MAX];
scanf("%d",&ncase);
while(ncase--)
{
memset(edge,,sizeof(edge));
scanf("%d %d",&v,&l);
ltotal = ;sum = ;flag = false;
for(int i = ;i<=v;i++)
{
father[i] = i;
}
for(int i=;i<=v;i++)
{
scanf("%d %d %d",&edge[i].a,&edge[i].b,&edge[i].value);
}
sort(edge+,edge++l,cmp);
for(int i = ;i<=l;i++)
{
if(join(edge[i].a,edge[i].b))
{
ltotal++;
sum+=edge[i].value;
cout<<edge[i].a<<"->"<<edge[i].b<<endl;
}
if(ltotal==v-)
{
flag = true;
break;
}
}
if(flag)
{
printf("%d\n",sum);
}
else
printf("data error. \n");
}
return ;
}
#include <iostream>
#include <algorithm>
#include <string.h>
using namespace std;
struct kruskal
{
int a;
int b;
int value;
};
const int MAXX = 1000;
bool cmp(const kruskal& a,const kruskal& b)
{
return a.value<b.value;
}
int father[MAXX];
int unionsearch(int x)
{
return x==father[x]?x:unionsearch(father[x]);
}
int main()
{
int num;
cin>>num;
kruskal edge[100];
while(num--)
{
memset(edge,0,sizeof(kruskal));
int n,l;
cin>>l>>n;
for(int i =1; i<=n; i++)
{
father[i] = i;
}
for(int i =1; i<=n; i++)
{
cin>>edge[i].a>>edge[i].b>>edge[i].value;
}
sort(edge+1,edge+1+n,cmp);
int flag = 1;
int ans = 0;
bool temp=false;
for(int i =1; i<=n; i++)
{
if(flag>=l)
{
temp=true;
break;
}
int fa = unionsearch(edge[i].a);
int fb = unionsearch(edge[i].b);
if(fa !=fb) // 这里可能有问题 ,关于条件的判断
{
flag++;
father[fb] = fa; // 这里可能有问题
ans+=edge[i].value;
cout<<edge[i].a<<" "<<edge[i].b<<endl;
}
}
if (temp)
cout<<ans<<endl;
else
cout<<"No"<<endl;
}
return 0;
}
Kruskal的更多相关文章
- 图的生成树(森林)(克鲁斯卡尔Kruskal算法和普里姆Prim算法)、以及并查集的使用
图的连通性问题:无向图的连通分量和生成树,所有顶点均由边连接在一起,但不存在回路的图. 设图 G=(V, E) 是个连通图,当从图任一顶点出发遍历图G 时,将边集 E(G) 分成两个集合 T(G) 和 ...
- 最小生成树---Prim算法和Kruskal算法
Prim算法 1.概览 普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树.意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (gra ...
- 最小生成树(prim&kruskal)
最近都是图,为了防止几次记不住,先把自己理解的写下来,有问题继续改.先把算法过程记下来: prime算法: 原始的加权连通图——————D被选作起点,选与之相连的权值 ...
- Kruskal 最小生成树算法
对于一个给定的连通的无向图 G = (V, E),希望找到一个无回路的子集 T,T 是 E 的子集,它连接了所有的顶点,且其权值之和为最小. 因为 T 无回路且连接所有的顶点,所以它必然是一棵树,称为 ...
- 权重最小生成树的思想与Kruskal算法
晚上做携程的笔试题,附加题考到了权重最小生成树.OMG,就在开考之前,我还又看过一遍这内容,可因为时间太紧,也从来没有写过代码,就GG了.又吃了眼高手低的亏.这不,就好好总结一下,亡羊补牢. 权重最小 ...
- 最小生成树 kruskal算法 codevs 1638 修复公路
1638 修复公路 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 钻石 Diamond 题解 题目描述 Description A地区在地震过后,连接所有村庄的公 ...
- 洛谷P1991无线通讯网[kruskal | 二分答案 并查集]
题目描述 国防部计划用无线网络连接若干个边防哨所.2 种不同的通讯技术用来搭建无线网络: 每个边防哨所都要配备无线电收发器:有一些哨所还可以增配卫星电话. 任意两个配备了一条卫星电话线路的哨所(两边都 ...
- NOIP2013货车运输[lca&&kruskal]
题目描述 A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 q 辆货车在运输货物, 司机们想知道每辆车在不超过车辆限重的情况下,最多 ...
- 最小生成树的Kruskal算法实现
最近在复习数据结构,所以想起了之前做的一个最小生成树算法.用Kruskal算法实现的,结合堆排序可以复习回顾数据结构.现在写出来与大家分享. 最小生成树算法思想:书上说的是在一给定的无向图G = (V ...
- poj2485 kruskal与prim
Kruskal: #include<iostream> #include<cstdio> #include<algorithm> using namespace s ...
随机推荐
- android开发 两张bitmap图片合成一张图片
场景:对android4.4解码gif(解码文章见前面一篇)后的图片进行每帧处理,android4.3 解码出来的每帧都很完整,但是到android4.4版本就不完整了,每帧都是在第一帧的基础上把被改 ...
- 【POJ】【2601】Simple calculations
推公式/二分法 好题! 题解:http://blog.csdn.net/zck921031/article/details/7690288 这题明显是一个方程组……可以推公式推出来…… 然而这太繁琐了 ...
- C++中的RAII机制
http://www.jellythink.com/archives/101 前言 在写C++设计模式——单例模式的时候,在写到实例销毁时,设计的GC类是很巧妙的,而这一巧妙的设计就是根据当对象的生命 ...
- 浏览器解析HTML文档的资源并下载
<img />,<style>这些资源是并行请求与加载. <script>脚本是同步请求与加载,阻塞加载.加载完成并执行后再继续解析HTML. 动态<scri ...
- C# 序列化 Serialize 的应用
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.I ...
- ZOJ2929 Penalty Kick(概率)
题目挺水的,但由于其独特的阅读量比赛的时候没发现这道水题,在此做一下翻译,如果有人搜到这翻译的话有帮助的话自然最好啦. 中国队平局进入最后的点球决胜局,首先抛硬币决定谁先罚球,然后先是罚五球,如果罚的 ...
- uva 11090
I I U P C 2 0 0 6 Problem G: Going in Cycle!! Input: standard input Output: standard output You are ...
- LA 4287
Consider the following exercise, found in a generic linear algebra textbook. Let A be an n × n matri ...
- C++堆栈与函数调用
一.C++程序内存分配 1)在栈上创建.在执行函数时,函数内局部变量的存储单元都在栈上创建,函数结束是,这些存储单元自动被释放.栈内存的分配运算内置于处理器的指令集中,一般采用寄存器来存取,效率很高但 ...
- sparksql链接mysql
1.在IDEA上建立一个sparksql_mysql的scala对象. 2.连接mysql的代码如下 import java.sql.{DriverManager, PreparedStatement ...