给nlog2n随便过的跪了,不得已弄了个哈希表伪装成nlogn(当然随便卡,好孩子不要学)……

不过为啥哈希表的大小开小点就RE啊……?必须得超过数据范围一大截才行……谜

#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
int f,c;
inline void R(int &x){
c=0;f=1;
for(;c<'0'||c>'9';c=getchar())if(c=='-')f=-1;
for(x=0;c>='0'&&c<='9';c=getchar())(x*=10)+=(c-'0');
x*=f;
}
#define INF 2147483647
#define MAXN 200001
#define MOD 200003
#define MAXN2 290003
typedef pair<int,int> Point;
struct HashTable
{
Point v[MAXN2];
int en,first[MOD],next[MAXN2];
HashTable(){en=0;memset(first,-1,sizeof(first));}
void insert(const Point &V)
{
int U=(int)(V.first%MOD);
for(int i=first[U];i!=-1;i=next[i]) if(v[i].first==V.first)
{v[i].second=min(v[i].second,V.second); return;}
v[en]=V; next[en]=first[U]; first[U]=en++;
}
}T;
int n,K,ans=INF,last;
int v[MAXN<<1],w[MAXN<<1],first[MAXN],next[MAXN<<1],en;
void AddEdge(const int &U,const int &V,const int &W)
{v[++en]=V; w[en]=W; next[en]=first[U]; first[U]=en;}
bool centroid[MAXN];
int size[MAXN];
int calc_sizes(int U,int Fa)
{
int res=1;
for(int i=first[U];i;i=next[i])
if(v[i]!=Fa&&(!centroid[v[i]]))
res+=calc_sizes(v[i],U);
return size[U]=res;
}
Point calc_centroid(int U,int Fa,int nn)
{
Point res=make_pair(INF,-1);
int sum=1,maxv=0;
for(int i=first[U];i;i=next[i])
if(v[i]!=Fa&&(!centroid[v[i]]))
{
res=min(res,calc_centroid(v[i],U,nn));
maxv=max(maxv,size[v[i]]);
sum+=size[v[i]];
}
maxv=max(maxv,nn-sum);
res=min(res,make_pair(maxv,U));
return res;
}
Point dis[MAXN];
int En;
void calc_dis(int U,int Fa,int d,int cnt)
{
dis[En++]=make_pair(d,cnt);
for(int i=first[U];i;i=next[i])
if(v[i]!=Fa&&(!centroid[v[i]]))
calc_dis(v[i],U,d+w[i],cnt+1);
}
int calc_pairs()
{
int res=0;
for(int i=last;i<En;++i)
{
int U=(int)((K-dis[i].first)%MOD);
for(int j=T.first[U];j!=-1;j=T.next[j])
if(T.v[j].first==K-dis[i].first)
{
ans=min(T.v[j].second+dis[i].second,ans);
break;
}
}
for(int i=last;i<En;++i) T.insert(dis[i]);
}
void solve(int U)
{
calc_sizes(U,-1);
int s=calc_centroid(U,-1,size[U]).second;
centroid[s]=1;
for(int i=first[s];i;i=next[i])
if(!centroid[v[i]])
solve(v[i]);
En=0; dis[En]=make_pair(0,0); T.insert(dis[En++]);
for(int i=first[s];i;i=next[i])
if(!centroid[v[i]])
{
last=En;
calc_dis(v[i],s,w[i],1);
calc_pairs();
}
for(int i=0;i<En;++i)
T.first[dis[i].first%MOD]=-1;
T.en=0;
centroid[s]=0;
}
int main()
{
int a,b,c;
R(n); R(K);
if(!K) {puts("0"); return 0;}
for(int i=1;i<n;++i)
{
R(a); R(b); R(c);
AddEdge(a,b,c);
AddEdge(b,a,c);
}
solve(1);
printf("%d\n",ans==INF ? -1 : ans);
return 0;
}

【点分治】【哈希表】bzoj2599 [IOI2011]Race的更多相关文章

  1. [bzoj2599][IOI2011]Race——点分治

    Brief Description 给定一棵带权树,你需要找到一个点对,他们之间的距离为k,且路径中间的边的个数最少. Algorithm Analyse 我们考虑点分治. 对于子树,我们递归处理,所 ...

  2. bzoj2599: [IOI2011]Race(点分治)

    写了四五道点分治的题目了,算是比较理解点分治是什么东西了吧= = 点分治主要用来解决点对之间的问题的,比如距离为不大于K的点有多少对. 这道题要求距离等于K的点对中连接两点的最小边数. 那么其实道理是 ...

  3. [luogu4149][bzoj2599][IOI2011]Race【点分治】

    题目描述 给一棵树,每条边有权.求一条简单路径,权值和等于 K,且边的数量最小. 题解 比较明显需要用到点分治,我们定义\(d\)数组表示当前节点到根节点\(rt\)之间有多少个节点,也可以表示有多少 ...

  4. 2019.01.09 bzoj2599: [IOI2011]Race(点分治)

    传送门 题意:给一棵树,每条边有权.求一条路径,权值和等于K,且边的数量最小. 思路: 考虑点分治如何合并. 我们利用树形dpdpdp求树的直径的方法,边dfsdfsdfs子树边统计答案即可. 代码: ...

  5. BZOJ2599 [IOI2011]Race 【点分治】

    题目 给一棵树,每条边有权.求一条简单路径,权值和等于K,且边的数量最小.N <= 200000, K <= 1000000 输入格式 第一行 两个整数 n, k 第二..n行 每行三个整 ...

  6. BZOJ2599:[IOI2011]Race(点分治)

    Description 给一棵树,每条边有权.求一条简单路径,权值和等于K,且边的数量最小.N <= 200000, K <= 1000000 Input 第一行 两个整数 n, k 第二 ...

  7. bzoj1758 [Wc2010]重建计划 & bzoj2599 [IOI2011]Race

    两题都是树分治. 1758这题可以二分答案avgvalue,因为avgvalue=Σv(e)/s,因此二分后只需要判断Σv(e)-s*avgvalue是否大于等于0,若大于等于0则调整二分下界,否则调 ...

  8. BZOJ2599 [IOI2011]Race

    传送门 点分治,黄学长的选根方法会T掉,换了这个人的选根方法就可以了. 当然,你也可以选择黄学长的奇淫优化 //BZOJ 2599 //by Cydiater //2016.9.23 #include ...

  9. BZOJ2599——[IOI2011]Race

    0.题意:给一棵树,每条边有权.求一条路径,权值和等于K,且边的数量最小. 1.分析:水题一道,一波树分治就好 我们可以发现这个题的K是比较小的,才100w,那么我们可以树分治一下,在遍历每一棵子树的 ...

随机推荐

  1. 使用adobe pdf去除PDF文档中的批量雷同文本

    一.问题的提出 MgoSoft tiff to pdf软件没有提供中国地区的非VISA用户的购买渠道,中国通常都是银联标识走天下,卡不是VISA买不了这样的软件, 那么, MgoSoft tiff t ...

  2. 移动端浏览器touch事件的研究总结

    $("body").on("touchstart", function(e) {     e.preventDefault();     startX = e. ...

  3. tomcat发布web项目的三种方式

    tomcat发布web项目的三种方式 方式一: 配置tomcat 安装目录下的conf/server.xml <Host name="loaclhost">标签里面添加 ...

  4. ext4文件系统由文件的inode号定位其inode Table

    在ubuntu中(以16.06为例),stat filename 可以查看文件的inode数值,但是如何确定该inode项具体在哪个块组下的inode Table中不是那么容易,接下来通过一步步计算来 ...

  5. C# new override

    A -> virtual Fun B : A -> override Fun C : B -> override Fun D : C -> new virtual Fun E ...

  6. C++开源库,欢迎补充。

    转载自:http://blog.csdn.net/kobejayandy/article/details/8681741 C++在"商业应用"方面,曾经是天下第一的开发语言,但这一 ...

  7. netty的Udp单播、组播、广播实例+Java的Udp单播、组播、广播实例

    网络上缺乏netty的udp的单播.组播案例,经过一番学习总结之后终于把这两个案例调通,下面把这两个案例的代码放在这里分享一下. 首先推荐博文: http://colobu.com/2014/10/2 ...

  8. HDU1596 find the safest road---(最短路径dijkstra,#变形#)

    http://acm.hdu.edu.cn/showproblem.php?pid=1596 分析: 题目要找一条安全度最高的路,安全度计算方法    Safe(P) = s(e1)*s(e2)…*s ...

  9. jstack 堆栈日志分析

    一.线程的状态 线程间的状态转换:  1. 新建(new):新创建了一个线程对象. 2. 可运行(runnable):线程对象创建后,其他线程(比如main线程)调用了该对象的start()方法.该状 ...

  10. 【STSRM12】整除

    [题意]给定长度为n的序列A,求最长的区间满足区间内存在数字能整除区间所有数字,同时求所有方案.n<=5*10^5,Ai<2^31. [算法]数论??? [题解]首先一个区间的基准数一定是 ...