题目描述

任何大于 1 的自然数 n 都可以写成若干个大于等于 2 且小于等于 n 的质数之和表达式(包括只有一个数构成的和表达式的情况),并且可能有不止一种质数和的形式。例如,9 的质数和表达式就有四种本质不同的形式:

9 = 2 + 5 + 2 = 2 + 3 + 2 + 2 = 3 + 3 + 3 = 2 + 7 。

这里所谓两个本质相同的表达式是指可以通过交换其中一个表达式中参加和运算的各个数的位置而直接得到另一个表达式。

试编程求解自然数 n 可以写成多少种本质不同的质数和表达式。

输入输出格式

输入格式:

文件中的每一行存放一个自然数 n(2 < n < 200) 。

输出格式:

依次输出每一个自然数 n 的本质不同的质数和表达式的数目。

输入输出样例

输入样例#1:

2
200
输出样例#1:

1
9845164

Solution:

  AH省选的一道水题。

  先筛出$200$以内的素数,然后对于每次询问$n$,等价于求不超过$n$的素数中选一些加起来等于$n$的方案数,直接跑一遍完全背包,改成计数就好了,状态$f[i]$表示$i$用素数组成的方案数,初始$f[0]=1$,那么状态转移方程就显而易见:$f[j]=f[j-prime[i]]+f[j]$。  

代码:

#include<bits/stdc++.h>
#define il inline
#define ll long long
#define For(i,a,b) for(int (i)=(a);(i)<=(b);(i)++)
#define Bor(i,a,b) for(int (i)=(b);(i)>=(a);(i)--)
using namespace std;
int n,f[],prime[],cnt;
bool isprime[]; int main(){
ios::sync_with_stdio();
For(i,,){
if(!isprime[i]) prime[++cnt]=i;
for(int j=;j<=cnt&&prime[j]*i<=;j++){
isprime[prime[j]*i]=;
if(i%prime[j]==)break;
}
}
while(cin>>n){
memset(f,,sizeof(f));f[]=;
For(i,,cnt) For(j,prime[i],n) f[j]+=f[j-prime[i]];
cout<<f[n]<<endl;
}
return ;
}

P2563 [AHOI2001]质数和分解的更多相关文章

  1. 洛谷 P2563 [AHOI2001]质数和分解

    洛谷  P2563 [AHOI2001]质数和分解 题目描述 任何大于 1 的自然数 n 都可以写成若干个大于等于 2 且小于等于 n 的质数之和表达式(包括只有一个数构成的和表达式的情况),并且可能 ...

  2. 洛谷 P2563 [AHOI2001]质数和分解 题解

    P2563 [AHOI2001]质数和分解 题目描述 任何大于 1 的自然数 n 都可以写成若干个大于等于 2 且小于等于 n 的质数之和表达式(包括只有一个数构成的和表达式的情况),并且可能有不止一 ...

  3. 洛谷P2563 [AHOI2001]质数和分解

    题目描述 任何大于 1 的自然数 n 都可以写成若干个大于等于 2 且小于等于 n 的质数之和表达式(包括只有一个数构成的和表达式的情况),并且可能有不止一种质数和的形式.例如,9 的质数和表达式就有 ...

  4. [AHOI2001]质数和分解

    [AHOI2001]质数和分解 题目描述 任何大于 1 的自然数 n 都可以写成若干个大于等于 2 且小于等于 n 的质数之和表达式(包括只有一个数构成的和表达式的情况),并且可能有不止一种质数和的形 ...

  5. 洛谷 [AHOI2001]质数和分解

     题目描述 Description 任何大于 1 的自然数 n 都可以写成若干个大于等于 2 且小于等于 n 的质数之和表达式(包括只有一个数构成的和表达式的情况),并且可能有不止一种质数和的形式.例 ...

  6. 【Luogu P2563】【集训Day 4 动态规划】质数和分解

    题目链接:Luogu P2563 质数和分解(prime) [问题描述] 任何大于 1 的自然数 N,都可以写成若干个大于等于2且小于等于 N 的质数之和表达式(包括只有一个数构成的和表达式的情况), ...

  7. [Luogu P2563]质数和分解

    题目链接 话不多说,这是一道质数题+完全背包.先预处理筛出质数,直接背包就行. #include<iostream> #include<cstdio> #include< ...

  8. 背包DP 方案数

    题目 1 P1832 A+B Problem(再升级) 题面描述 给定一个正整数n,求将其分解成若干个素数之和的方案总数. 题解 我们可以考虑背包DP实现 背包DP方案数板子题 f[ i ] = f[ ...

  9. 【省选水题集Day1】一起来AK水题吧! 题目(更新到B)

    题解:http://www.cnblogs.com/ljc20020730/p/6937954.html 水题A: [AHOI2001]质数和分解 题目网址: https://www.luogu.or ...

随机推荐

  1. MongoDB在单机上搭建分片副本集群(windows),版本二

    配置可以参考前面一篇 https://www.cnblogs.com/a-horse-mosaic/p/9284010.html 副本集是一组服务器,其中有一个主服务器(primary),用于处理客户 ...

  2. pycharm中每次创建py文件时就自动生成代码头,以及出现SyntaxError:Non-ASCII 。。。问题

    我们在pycharm中执行py文件的时候,可能会出现以下错误 这是因为你没有制定编码格式,这时候你需要在文件最开始制定编码格式,代码如下 #!/user/bin/env python #-*- cod ...

  3. 什么是mysql数据库安全 简单又通俗的mysql库安全简介

    首先我们要了解一下什么是mysql数据库,mysql是目前网站以及APP应用上用的较多的一个开源的关系型数据库系统,可以对数据进行保存,分段化的数据保存,也可以对其数据进行检索,查询等功能的数据库. ...

  4. QOS-CBQ概述

     QOS-CBQ概述 2018年7月7日    19:56 CBQ(基于类的对列)是一种基于QOS policy实现的拥塞管理技术. CBQ中包含一个LLQ(低延迟队列),用来支撑EF(快速转发)类业 ...

  5. Vuex实践

    本文来自网易云社区 作者:刘凌阳 前言 2017年对于Vue注定是不平凡的一年.凭借着自身简介.轻量.快速等特点,Vue俨然成为最火的前端MVVM开发框架.随着Vue2.0的release,越来越多的 ...

  6. 【js笔记】数组那些事[0]

    js中数组是一个特殊的对象,索引是它的属性,整数索引在内部被转化为字符串类型. 1 数组的创建 new关键字方法:var arr=new Array() var arr=new Array(10); ...

  7. Git 使用 粗糙记录

    版本控制应该是每一个开发人员应该会的东西,奈何,学校没有学习,随着写代码的时间的加长,越来月觉得版本控制的必要性了. 记得在实习的公司,同一痛的都是SVN. 至于GIt和SVN的区别,直接看连接 ht ...

  8. 【性能调优】一次关于慢查询及FGC频繁的调优经历

    以下来分享一个关于MySQL数据库慢查询和FGC频繁的性能案例. 一.系统架构 一个简单的dubbo服务,服务提供者提供接口,并且提供接口的实现,提供方注册服务到Zookeeper注册中心,然后消费者 ...

  9. python 自动化-"Elements not visible"

    一,今天试着跑一个多乘客下单的python脚本, 总是遇到  Elements not visible 或者  not clickable的错误 解决方法: 1. 首先观察脚本运行时, 报错的那个元素 ...

  10. Django源码分析之权限系统_擒贼先擒王

    乍见 Django内置的权限系统已经很完善了,加上django-guardian提供的功能,基本上能满足大部分的权限需求.暂且不说django-guardian,我们先来看下Django内置的权限系统 ...