Long Jumps(二分查找lower_bound()函数的运用)
Valery is a PE teacher at a school in Berland. Soon the students are going to take a test in long jumps, and Valery has lost his favorite ruler!
However, there is no reason for disappointment, as Valery has found another ruler, its length is l centimeters. The ruler already has nmarks, with which he can make measurements. We assume that the marks are numbered from 1 to n in the order they appear from the beginning of the ruler to its end. The first point coincides with the beginning of the ruler and represents the origin. The last mark coincides with the end of the ruler, at distance l from the origin. This ruler can be repesented by an increasing sequence a1, a2, ..., an, where ai denotes the distance of the i-th mark from the origin (a1 = 0, an = l).
Valery believes that with a ruler he can measure the distance of d centimeters, if there is a pair of integers i and j (1 ≤ i ≤ j ≤ n), such that the distance between the i-th and the j-th mark is exactly equal to d (in other words, aj - ai = d).
Under the rules, the girls should be able to jump at least x centimeters, and the boys should be able to jump at least y (x < y) centimeters. To test the children's abilities, Valery needs a ruler to measure each of the distances x and y.
Your task is to determine what is the minimum number of additional marks you need to add on the ruler so that they can be used to measure the distances x and y. Valery can add the marks at any integer non-negative distance from the origin not exceeding the length of the ruler.
The first line contains four positive space-separated integers n, l, x, y (2 ≤ n ≤ 105, 2 ≤ l ≤ 109, 1 ≤ x < y ≤ l) — the number of marks, the length of the ruler and the jump norms for girls and boys, correspondingly.
The second line contains a sequence of n integers a1, a2, ..., an (0 = a1 < a2 < ... < an = l), where ai shows the distance from the i-th mark to the origin.
In the first line print a single non-negative integer v — the minimum number of marks that you need to add on the ruler.
In the second line print v space-separated integers p1, p2, ..., pv (0 ≤ pi ≤ l). Number pi means that the i-th mark should be at the distance of pi centimeters from the origin. Print the marks in any order. If there are multiple solutions, print any of them.
0 300
output
体育课要考试,一老师拿了一把长度为l的尺子,尺子上标有一些刻度,他要求女生能跳x,男生能跳y(y>x).但是这些刻度不一定能满足测量的要求,告诉你这些刻度,让你判断一下最多需要添加几个点。理解题意很重要,有几点需要注意一下。
1.一共只需要两个刻度,所以需要的点数只有0,1,2三种可能。
2.所需要的刻度也可以由ai-aj得到。
3.多组解符合情况输出任何一组都可以。
个人心得:made做了一早上set,啥的全用了,该考虑的跨界问题也解决了,就是二重循环把时间卡死了,很无奈,后面看了大神们二分查找才知道,看来得找个机会去看看这个函数的原理啥的。
题解:
题目看起来是很简单的,但是却又感觉无从下手。先来分析一下所有情况:
1.两个距离都能找到,存在某几个点之间距离差恰好等于x,y,添加0个点;
2.只能找到一个距离x或y,添加1个点;
3.一个都找不到,但是两个点能共用一个点,只需添加一个公用点。共用一个点的话有两种情况,一种是公用点在三点中间,则能在原刻度上找到两个点使两点间距离满足x+y,另一种情况是公用点在两边,则能在原刻度上找到两个点间距离满足y-x,这种情况在左右添加公共点都可以,但是一定注意不要越过边界。此时添加1个点;
4.其他,添加2个点;
情况分析好了之后就很简单了,从前向后遍历,找四个距离,根据查找结果输出答案就好了。因为只差照一次就可以,所以时间上也快了很多。但是有一点需要注意,x,y,x+y都没问题,只要能找到一定能符合情况,但y-x就需要另外判断一下,只满足差值但是往两边添加点时却有可能越界。一定要在查找的时候去判断,比如有两组点满足差值为y-x,如果你在查找到第一组时就跳出,可能第一组是两边都会越界的,此时第二组右边虽然一定越界但左边却可能会满足,所以一定要放在查找的时候去判断。因为这个点wa了无数次,一定要注意。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<set>
#include<map>
#include<vector>
#include<stack>
#include<queue>
#include<algorithm>
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
int n,l,x,y;
int ch[];
int findr(int ans);
void solve()
{
int r1=findr(x),r2=findr(y),r3=findr(x+y),r4=findr(y-x);
if(r1!=-&&r2!=-) cout<<""<<endl;
else if(r1!=-) cout<<""<<endl<<y<<endl;
else if(r2!=-) cout<<""<<endl<<x<<endl;
else
{
if(r4!=-) cout<<""<<endl<<r4<<endl;
else if(r3!=-) cout<<""<<endl<<r3<<endl;
else if(r3==-&&r4==-)
cout<<""<<endl<<x<<" "<<y<<endl;
}
}
int findr(int ans)
{
int t;
for(int i=;i<n;i++)
{ t=lower_bound(ch,ch+n,ch[i]+ans)-ch;
if(t==n)
break;
else
{
if(ch[t]==ch[i]+ans)
{
if(ans==y-x)
{
if(ch[t]-y<&&ch[t]+x>l) continue;
else if(ch[t]-y>=) return ch[t]-y;
else return ch[t]+x;
}
else if(ans==x+y) return ch[t]-y;
else
return ;
}
}
}
return -;
}
int main()
{ cin>>n>>l>>x>>y;
for(int i=;i<n;i++)
cin>>ch[i];
solve();
return ;
}
Long Jumps(二分查找lower_bound()函数的运用)的更多相关文章
- STL中的二分查找———lower_bound,upper_bound,binary_search
关于STL中的排序和检索,排序一般用sort函数即可,今天来整理一下检索中常用的函数——lower_bound , upper_bound 和 binary_search . STL中关于二分查找的函 ...
- LeetCode:Search Insert Position,Search for a Range (二分查找,lower_bound,upper_bound)
Search Insert Position Given a sorted array and a target value, return the index if the target is fo ...
- STL中的二分查找——lower_bound 、upper_bound 、binary_search
STL中的二分查找函数 1.lower_bound函数 在一个非递减序列的前闭后开区间[first,last)中.进行二分查找查找某一元素val.函数lower_bound()返回大于或等于val的第 ...
- 41、用Python实现一个二分查找的函数
data = [1, 3, 6, 7, 9, 12, 14, 16, 17, 18, 20, 21, 22, 23, 30, 32, 33, 35] def binary_search(dataset ...
- STL 二分查找三兄弟(lower_bound(),upper_bound(),binary_search())
一:起因 (1)STL中关于二分查找的函数有三个:lower_bound .upper_bound .binary_search -- 这三个函数都运用于有序区间(当然这也是运用二分查找的前提),以 ...
- C++中lower_bound函数和upper_bound函数
STL中关于二分查找的函数有三个lower_bound .upper_bound .binary_search .这三个函数都运用于有序区间(当然这也是运用二分查找的前提),下面记录一下这两个函数. ...
- STL中的二分查找
本文转载于https://blog.csdn.net/riba2534/article/details/69240450 使用的时候注意:必须用在非递减的区间中 二分查找的原理非常简单,但写出的代码中 ...
- lower_bound()函数,upper_bound()函数
1.查找:STL中关于二分查找的函数有三个lower_bound .upper_bound .binary_search .这三个函数都运用于有序区间(当然这也是运用二分查找的前提),下面记录一下这两 ...
- 【学习记录】二分查找的C++实现,代码逐步优化
二分查找的思想很简单,它是针对于有序数组的,相当于数组(设为int a[N])排成一颗二叉平衡树(左子节点<=父节点<=右子节点),然后从根节点(对应数组下标a[N/2])开始判断,若值& ...
随机推荐
- android studio的安装和卸载
安装: (待补充) 卸载: (如何彻底卸载才能达到第二次安装不受第一次安装失败的影响呢?) 1.找到安装目录,运行卸载文件.(不用清注册表,这是和卸载mysql的不同,只要把相关的文件夹,文件清楚即可 ...
- 【转】dmesg 时间转换
dmesg 时间转换 dmesg 输出的格式不易查看,可以通过命令进行转换. 记录如下: 时间查看: date -d "1970-01-01 UTC `echo "$(date + ...
- UI控件之UICollectionView
UICollectionView:集合视图,是iOS6.0后出现的,与UITableView类似,优势在于可以灵活的布局cell UICollectionViewLayout:布局类,抽象类,一般定义 ...
- Shell编程之Linux信号及信号跟踪
一.Linux信号 1.什么是信号? Linux信号是由一个整数构成的异步消息,它可以由某个进程发给其他进程,也可以在用户按下特定键发生某种异常事件时,由系统发给某个进程. 2.信号列表 [root@ ...
- LVS/DR 配置
LVS/DR 配置 实验环境 三台主机:Linux Centos 6.4 32位 调度器Director:192.168.1.160(公网IP).192.168.1.100(VIP) HTTP真实服务 ...
- time_t、pthread_t
1.time_t实际上就是长整型long int;用来保存从1970年1月1日0时0分0秒到现在时刻的秒数!用time()这个函数获取! #ifndef __TIME_T #define __TIME ...
- MIPI DBI\DPI\DSI简介【转】
本文转载自:http://blog.csdn.net/longxiaowu/article/details/24249971 (1)DBI接口 A,也就是通常所讲的MCU借口,俗称80 system接 ...
- Eclipse Validating缓慢的优化
使用Eclipse的人基本都有这种情况,如图: 各种等待有木有,各种崩溃啊有木有,反正我是觉得挺烦的,但是也不知道是干嘛的,如果取消了,造成程序出问题,就是给自己找麻烦,我知道这个事情肯定是可以关的, ...
- keepalived检测脚本及注意事项
keepalived检测脚本的作用及注意事项: 默认每隔3秒钟执行一次检测脚本,检查nginx服务是否启动,如果没启动就把nginx服务启动起来,如果启动不成功,就把keepalived服务down掉 ...
- 文件系统中跳转【TLCL】
pwd - Print name of current working directory cd - Change directory ls - List directory contents Lin ...