题目链接

洛谷P4593

题解

orz dalao

upd:经典的自然数幂和,伯努利数裸题

由题我们只需模拟出代价,只需使用\(S(n,k) = \sum\limits_{i = 1}^{n} i^{k}\)这样的前缀和计算

我不知道怎么来的这样一个公式:

\[(n + 1)^{k} - n^{k} = \sum\limits_{i = 1}^{k} {k \choose i}n^{k - i}
\]

这玩意怎么来的呢?

左边为\((n + 1)^k - n^k\),\((n+1)^k\)可以看做有\(k\)个位置进行染色,每个位置有\(n + 1\)种染色的方案数,减去\(n^k\),就代表了拥有第\(n + 1\)种颜色的染色方案数

那么这个等式就很好理解了,我们枚举第\(n + 1\)种颜色染了多少个,就得到了右式

我们发现这个公式右侧涵盖了所有\(n^i \quad[ i \in [0,k]]\)的项,我们令\(k = k + 1\),如果我们将所有\(n\)枚举出来,将会的得到:

\[\begin{aligned}
(n + 1)^{k + 1} - n^{k + 1} &= \sum\limits_{i = 1}^{k + 1} {k + 1\choose i}n^{k + 1 - i} \\
n^{k + 1} - (n - 1)^{k + 1} &= \sum\limits_{i = 1}^{k + 1} {k + 1\choose i}(n - 1)^{k + 1 - i} \\
......... \\
2^{k + 1} - 1^{k + 1} &= \sum\limits_{i = 1}^{k + 1} {k + 1\choose i}1^{k + 1 - i} \\
\end{aligned}
\]

全部相加,得到:

\[(n + 1)^{k + 1} - 1 = \sum\limits_{i= 1}^{k + 1} {k + 1 \choose i} S(n,k + 1 - i)
\]

取出\(S(n,k)\)

\[S(n,k) = \frac{(n + 1)^{k + 1} - 1 - \sum\limits_{i = 0}^{k - 1}{k + 1 \choose i} S(n,i)}{k + 1}
\]

发现就可以\(O(k^2)\)递推了

由于模拟也是\(O(k^2)\)的

所以最终复杂度\(O(k^4)\)

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
using namespace std;
const int maxn = 105,maxm = 100005,INF = 1000000000,P = 1000000007;
inline LL read(){
LL out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
LL a[maxn],fac[maxn],fv[maxn],inv[maxn],n,m,K;
void init(){
fac[0] = fac[1] = fv[0] = fv[1] = inv[0] = inv[1] = 1;
for (int i = 2; i < maxn; i++){
fac[i] = 1ll * fac[i - 1] * i % P;
inv[i] = 1ll * (P - P / i) * inv[P % i] % P;
fv[i] = 1ll * fv[i - 1] * inv[i] % P;
}
}
LL C(LL n,LL m){
return 1ll * fac[n] * fv[m] % P * fv[n - m] % P;
}
LL qpow(LL a,LL b){
LL ans = 1; a %= P;
for (; b; b >>= 1,a = a * a % P)
if (b & 1) ans = ans * a % P;
return ans;
}
LL f[maxn];
LL S(LL n,LL k){
if (!n) return 0;
f[0] = n % P;
for (int i = 1; i <= k; i++){
LL tmp = 0;
for (int j = 0; j <= i - 1; j++)
tmp = (tmp + C(i + 1,j) * f[j] % P) % P;
f[i] = (((qpow(n + 1,i + 1) - 1) % P - tmp) % P + P) % P * inv[i + 1] % P;
}
return f[k];
}
LL b[maxn];
int main(){
init();
int T = read();
while (T--){
n = read(); m = read(); K = m + 1;
REP(i,m) a[i] = read(); a[K] = n + 1;
sort(a + 1,a + 1 + K);
LL ans = 0;
for (int i = 0; i <= m; i++){
for (int j = i; j <= m; j++){
ans = ((ans + (S(a[j + 1] - 1,K) - S(a[j],K)) % P) % P + P) % P;
}
LL len = a[i + 1] - a[i];
for (int j = i + 1; j <= K; j++) a[j] -= len;
}
printf("%lld\n",ans);
}
return 0;
}

洛谷P4593 [TJOI2018]教科书般的亵渎 【数学】的更多相关文章

  1. 洛谷 P4593 [TJOI2018]教科书般的亵渎

    洛谷 P4593 [TJOI2018]教科书般的亵渎 神仙伯努利数...网上一堆关于伯努利数的东西但是没有证明,所以只好记结论了? 题目本质要求\(\sum_{i=1}^{n}i^k\) 伯努利数,\ ...

  2. 洛谷P4593 [TJOI2018]教科书般的亵渎

    小豆喜欢玩游戏,现在他在玩一个游戏遇到这样的场面,每个怪的血量为\(a_i\)​,且每个怪物血量均不相同,小豆手里有无限张"亵渎".亵渎的效果是对所有的怪造成\(1\)点伤害,如果 ...

  3. 洛谷P4593 [TJOI2018]教科书般的亵渎(拉格朗日插值)

    题意 题目链接 Sol 打出暴力不难发现时间复杂度的瓶颈在于求\(\sum_{i = 1}^n i^k\) 老祖宗告诉我们,这东西是个\(k\)次多项式,插一插就行了 上面的是\(O(Tk^2)\)的 ...

  4. P4593 [TJOI2018]教科书般的亵渎(拉格朗日插值)

    传送门 首先所有亵渎的张数\(k=m+1\),我们考虑每一次使用亵渎,都是一堆\(i^k\)之和减去那几个没有出现过的\(j^k\),对于没有出现过的我们可以直接快速幂处理并减去,所以现在的问题就是如 ...

  5. Luogu P4593 [TJOI2018]教科书般的亵渎

    亵渎终于离开标准了,然而铺场快攻也变少了 给一个大力枚举(无任何性质)+艹出自然数幂和的方法,但是复杂度极限是\(O(k^4)\)的,不过跑的好快233 首先简单数学分析可以得出\(k=m+1\),因 ...

  6. 并不对劲的复健训练-bzoj5339:loj2578:p4593:[TJOI2018]教科书般的亵渎

    题目大意 题目链接 题解 先将\(a\)排序. \(k\)看上去等于怪的血量连续段的个数,但是要注意当存在\(a_i+1=a_{i+1}\)时,虽然它们之间的连续段为空,但是还要算上:而当\(a_m= ...

  7. p4593 [TJOI2018]教科书般的亵渎

    分析 我们发现$Ans = \sum_i \sum_j (j-p_i)^{m+1}$ 因此直接套用622f的方法即可 代码 #include<bits/stdc++.h> using na ...

  8. 【BZOJ5339】[TJOI2018]教科书般的亵渎(斯特林数)

    [BZOJ5339][TJOI2018]教科书般的亵渎(斯特林数) 题面 BZOJ 洛谷 题解 显然交亵渎的次数是\(m+1\). 那么这题的本质就是让你求\(\sum_{i=1}^n i^{m+1} ...

  9. BZOJ.5339.[TJOI2018]教科书般的亵渎(拉格朗日插值) & 拉格朗日插值学习笔记

    BZOJ 洛谷 题意的一点说明: \(k\)次方这个\(k\)是固定的,也就是最初需要多少张亵渎,每次不会改变: 因某个怪物死亡引发的亵渎不会计分. 不难发现当前所需的张数是空格数+1,即\(m+1\ ...

随机推荐

  1. stm32+lwip(五):以太网帧发送测试

    我是卓波,很高兴你来看我的博客. 系列文章: stm32+lwip(一):使用STM32CubeMX生成项目 stm32+lwip(二):UDP测试 stm32+lwip(三):TCP测试 stm32 ...

  2. Linux(CentOS)安装Node.JS

    源码安装 比使用yum安装灵活 1.创建目录 cd /opt mkdir program cd program 2.下载安装包 wget https://nodejs.org/dist/v8.12.0 ...

  3. WPF中使用定时器的注意事项

    原文:WPF中使用定时器的注意事项 注意事项 要使用System.Windows.Threading.DispatcherTimer,而不能使用System.Timers.Timer. 原因是WPF是 ...

  4. linux-clone-ip处理办法

    vim /etc/udev/rules.d/70-persistent-net.rules 步骤1:#将eth0相关的文件给删除 步骤2:#vi /etc/sysconfig/network-scri ...

  5. Python初步

    准备在工作之余看看Python的东西 收录一些资料 Python初学者(零基础学习Python.Python入门)常见问题:书籍推荐.资料.社区 http://blog.csdn.net/xiaowa ...

  6. 实现一个简单版的express

    express应该算是早期最优秀的一个node框架了,刚开始学node做后端语言就是用的express,它的cli可以帮我们搭建好项目目录,就像现在的vue,react一样.express本身没有做太 ...

  7. 「日常训练」 Soldier and Cards (CFR304D2C)

    题意 (Codeforces 546C) 按照指定的规则打牌,问谁胜或无穷尽. 分析 又是一条模拟,用set+queue(这里手写了)处理即可.注意到两种局势"1 234"和&qu ...

  8. python正则-字符串处理,主要用于处理请求参数格式为application/x-www-form-urlencoded的表单数据

    #当提交的表单数据格式为application/x-www-form-urlencoded,直接从浏览器复制出来的格式是str_lin(chrome,也是最常见的)或者str_in2(火狐)这两种格式 ...

  9. resetroot_169route_python2(用于ubuntu12.04和14.04,centos系列)

    #!/usr/bin/python import os import json import subprocess from cloudinit.sources.DataSourceConfigDri ...

  10. [CH5302]金字塔

    题面 虽然探索金字塔是极其老套的剧情,但是有一队探险家还是到了某金字塔脚下.经过多年的研究,科学家对这座金字塔的内部结构已经有所了解.首先,金字塔由若干房间组成,房间之间连有通道.如果把房间看作节点, ...