【十大经典数据挖掘算法】系列

  1. C4.5
  2. K-Means
  3. SVM
  4. Apriori
  5. EM
  6. PageRank
  7. AdaBoost
  8. kNN
  9. Naïve Bayes
  10. CART

1. 极大似然

极大似然(Maximum Likelihood)估计为用于已知模型的参数估计的统计学方法。比如,我们想了解抛硬币是正面(head)的概率分布\(\theta\);那么可以通过最大似然估计方法求得。假如我们抛硬币\(10\)次,其中\(8\)次正面、\(2\)次反面;极大似然估计参数\(\theta\)值:

\[
\hat{\theta} = \arg\underset{\theta}{\max}\, l(\theta) = \arg\underset{\theta}{\max}\, \theta^8(1-\theta)^2
\]

其中,\(l(\theta)\)为观测变量序列的似然函数(likelihood function of the observation sequence)。对\(l(\theta)\)求偏导

\[
\frac{\partial l(\theta)}{\partial \theta} = \theta^7(1-\theta)(8-10\theta) \Rightarrow \hat{\theta} = 0.8
\]

因为似然函数\(l(\theta)\)不是凹函数(concave),求解极大值困难。一般地,使用与之具有相同单调性的log-likelihood,如图所示

凹函数(concave)与凸函数(convex)的定义如图所示:

从图中可以看出,凹函数“容易”求解极大值,凸函数“容易”求解极小值。

2. EM算法

EM算法(Expectation Maximization)是在含有隐变量(latent variable)的模型下计算最大似然的一种算法。所谓隐变量,是指我们没有办法观测到的变量。比如,有两枚硬币A、B,每一次随机取一枚进行抛掷,我们只能观测到硬币的正面与反面,而不能观测到每一次取的硬币是否为A;则称每一次的选择抛掷硬币为隐变量。

用Y表示观测数据,Z表示隐变量;Y和Z连在一起称为完全数据( complete-data ),观测数据Y又称为不完全数据(incomplete-data)。观测数据的似然函数:

\[
P(Y | \theta) = \sum_{Z} P(Z|\theta)P(Y|Z,\theta)
\]

求模型参数的极大似然估计:

\[
\hat{\theta} = \arg\underset{\theta}{\max}\, \log P(Y | \theta)
\]

因为含有隐变量,此问题无法求解。因此,Dempster等人提出EM算法用于迭代求解近似解。EM算法比较简单,分为两个步骤:

  • E步(E-step),以当前参数\(\theta^{(i)}\)计算\(Z\)的期望值

\[
Q(\theta, \theta^{(i)}) = \mathbb{E}_Z[\log P(Y,X|\theta)| Y, \theta^{(i)}]
\]

  • M步(M-step),求使\(Q(\theta, \theta^{(i)})\)极大化的\(\theta\),确定第\(i+1\)次迭代的参数的估计值\(\theta^{(i+1)}\)

\[
\theta^{(i+1)} = \arg\underset{\theta}{\max}\, Q(\theta, \theta^{(i)})
\]

如此迭代直至算法收敛。关于算法的推导及收敛性证明,可参看李航的《统计学习方法》及Andrew Ng的《CS229 Lecture notes》。这里有一些极大似然以及EM算法的生动例子。

3. 实例

[2]中给出极大似然与EM算法的实例。如图所示,有两枚硬币A、B,每一个实验随机取一枚抛掷10次,共5个实验,我们可以观测到每一次所取的硬币,估计参数A、B为正面的概率\(\theta = (\theta_A, \theta_B)\),根据极大似然估计求解

如果我们不能观测到每一次所取的硬币,只能用EM算法估计模型参数,算法流程如图所示:

隐变量\(Z\)为每次实验中选择A或B的概率,则第一个实验选择A的概率为

\[
P(z_1 = A |y_1, \theta^{(0)}) = \frac{P(z_1 = A |y_1, \theta^{(0)})}{P(z_1 = A |y_1, \theta^{(0)}) + P(z_1 = B |y_1, \theta^{(0)})} = \frac{0.6^5*0.4^5}{0.6^5*0.4^5 + 0.5^{10}} = 0.45
\]

按照上面的计算方法可依次求出隐变量\(Z\),然后计算极大化的\(\theta^{(i)}\)。经过10次迭代,最终收敛。

4. 参考资料

[1] 李航,《统计学习方法》.
[2] Chuong B Do & Serafim Batzoglou, What is the expectation maximization algorithm?
[3] Pieter Abbeel, Maximum Likelihood (ML), Expectation Maximization (EM).
[4] Rudan Chen,【机器学习算法系列之一】EM算法实例分析.

【十大经典数据挖掘算法】EM的更多相关文章

  1. 【十大经典数据挖掘算法】PageRank

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 我特地把PageRank作为[十大经 ...

  2. 【十大经典数据挖掘算法】AdaBoost

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 集成学习 集成学习(ensem ...

  3. 【十大经典数据挖掘算法】SVM

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART SVM(Support Vector ...

  4. 【十大经典数据挖掘算法】Naïve Bayes

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 朴素贝叶斯(Naïve Bayes) ...

  5. 【十大经典数据挖掘算法】C4.5

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 决策树模型与学习 决策树(de ...

  6. 【十大经典数据挖掘算法】k-means

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 引言 k-means与kNN虽 ...

  7. 【十大经典数据挖掘算法】Apriori

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 关联分析 关联分析是一类非常有 ...

  8. 【十大经典数据挖掘算法】kNN

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 引言 顶级数据挖掘会议ICDM ...

  9. 【十大经典数据挖掘算法】CART

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 前言 分类与回归树(Class ...

随机推荐

  1. C语言 · 奇偶判断

    问题描述 能被2整除的数称为偶数,不能被2整除的数称为奇数.给一个整数x,判断x是奇数还是偶数. 输入格式 输入包括一个整数x,0<=x<=100000000. 输出格式 如果x是奇数,则 ...

  2. JS与APP原生控件交互

    "热更新"."热部署"相信对于混合式开发的童鞋一定不陌生,那么APP怎么避免每次升级都要在APP应用商店发布呢?这里就用到了混合式开发的概念,对于电商网站尤其显 ...

  3. Python爬虫小白入门(四)PhatomJS+Selenium第一篇

    一.前言 在上一篇博文中,我们的爬虫面临着一个问题,在爬取Unsplash网站的时候,由于网站是下拉刷新,并没有分页.所以不能够通过页码获取页面的url来分别发送网络请求.我也尝试了其他方式,比如下拉 ...

  4. Atitit.研发管理如何避免公司破产倒闭的业务魔咒

    Atitit.如何避免公司破产倒闭的业务魔咒 1. 大型公司的衰落或者倒闭破产案例1 1.1. 摩托罗拉1 1.2. 诺基亚2 1.3. sun2 2. 为什么他们会倒闭?? 常见的一些倒闭元素2 2 ...

  5. crontab介绍

    1.Cron的启动与关闭 由于Cron是Linux的内置服务,可以用以下的方法启动.关闭这个服务: /sbin/service crond start           //启动服务/sbin/se ...

  6. RMS:Microsoft Office检测到您的信息权限管理配置有问题。有关详细信息,请与管理员联系。(转)

    原文:https://zhidao.baidu.com/question/435088233.html RMS有两种方式: 1.使用微软的服务器,这个是连接到微软的服务器上面做权限控制,在今年5月份之 ...

  7. 使用Jenkins配置Git+Maven的自动化构建

    Jenkins是一个开源的持续集成工具,应用Jenkins搭建持续集成环境,可以进行自动构建.自动编译和部署,非常方便. 在服务器比较少的情况下,Jenkins的优势并不明显,但是随着项目发展,服务器 ...

  8. 菜鸟在C语言编译,链接时可能遇到的两个问题

    最近在看 CSAPP (Computer Systems A Programmers Perspective 2nd) 的第七章 链接.学到了点东西,跟大家分享.下文中的例子都是出自CSAPP第七章. ...

  9. 疯狂的JSONP

    何为跨域?何为JSONP?JSONP技术能实现什么?是否有必要使用JSONP技术? 跨域 就是由于JavaScript同源策略的限制,使得a.com域名下的js无法操作b.com或c.a.com域名下 ...

  10. .NET中使用Redis

    Redis是一个用的比较广泛的Key/Value的内存数据库,新浪微博.Github.StackOverflow 等大型应用中都用其作为缓存,Redis的官网为http://redis.io/. 最近 ...