【十大经典数据挖掘算法】EM
【十大经典数据挖掘算法】系列
1. 极大似然
极大似然(Maximum Likelihood)估计为用于已知模型的参数估计的统计学方法。比如,我们想了解抛硬币是正面(head)的概率分布\(\theta\);那么可以通过最大似然估计方法求得。假如我们抛硬币\(10\)次,其中\(8\)次正面、\(2\)次反面;极大似然估计参数\(\theta\)值:
\[
\hat{\theta} = \arg\underset{\theta}{\max}\, l(\theta) = \arg\underset{\theta}{\max}\, \theta^8(1-\theta)^2
\]
其中,\(l(\theta)\)为观测变量序列的似然函数(likelihood function of the observation sequence)。对\(l(\theta)\)求偏导
\[
\frac{\partial l(\theta)}{\partial \theta} = \theta^7(1-\theta)(8-10\theta) \Rightarrow \hat{\theta} = 0.8
\]
因为似然函数\(l(\theta)\)不是凹函数(concave),求解极大值困难。一般地,使用与之具有相同单调性的log-likelihood,如图所示
凹函数(concave)与凸函数(convex)的定义如图所示:
从图中可以看出,凹函数“容易”求解极大值,凸函数“容易”求解极小值。
2. EM算法
EM算法(Expectation Maximization)是在含有隐变量(latent variable)的模型下计算最大似然的一种算法。所谓隐变量,是指我们没有办法观测到的变量。比如,有两枚硬币A、B,每一次随机取一枚进行抛掷,我们只能观测到硬币的正面与反面,而不能观测到每一次取的硬币是否为A;则称每一次的选择抛掷硬币为隐变量。
用Y表示观测数据,Z表示隐变量;Y和Z连在一起称为完全数据( complete-data ),观测数据Y又称为不完全数据(incomplete-data)。观测数据的似然函数:
\[
P(Y | \theta) = \sum_{Z} P(Z|\theta)P(Y|Z,\theta)
\]
求模型参数的极大似然估计:
\[
\hat{\theta} = \arg\underset{\theta}{\max}\, \log P(Y | \theta)
\]
因为含有隐变量,此问题无法求解。因此,Dempster等人提出EM算法用于迭代求解近似解。EM算法比较简单,分为两个步骤:
- E步(E-step),以当前参数\(\theta^{(i)}\)计算\(Z\)的期望值
\[
Q(\theta, \theta^{(i)}) = \mathbb{E}_Z[\log P(Y,X|\theta)| Y, \theta^{(i)}]
\]
- M步(M-step),求使\(Q(\theta, \theta^{(i)})\)极大化的\(\theta\),确定第\(i+1\)次迭代的参数的估计值\(\theta^{(i+1)}\)
\[
\theta^{(i+1)} = \arg\underset{\theta}{\max}\, Q(\theta, \theta^{(i)})
\]
如此迭代直至算法收敛。关于算法的推导及收敛性证明,可参看李航的《统计学习方法》及Andrew Ng的《CS229 Lecture notes》。这里有一些极大似然以及EM算法的生动例子。
3. 实例
[2]中给出极大似然与EM算法的实例。如图所示,有两枚硬币A、B,每一个实验随机取一枚抛掷10次,共5个实验,我们可以观测到每一次所取的硬币,估计参数A、B为正面的概率\(\theta = (\theta_A, \theta_B)\),根据极大似然估计求解
如果我们不能观测到每一次所取的硬币,只能用EM算法估计模型参数,算法流程如图所示:
隐变量\(Z\)为每次实验中选择A或B的概率,则第一个实验选择A的概率为
\[
P(z_1 = A |y_1, \theta^{(0)}) = \frac{P(z_1 = A |y_1, \theta^{(0)})}{P(z_1 = A |y_1, \theta^{(0)}) + P(z_1 = B |y_1, \theta^{(0)})} = \frac{0.6^5*0.4^5}{0.6^5*0.4^5 + 0.5^{10}} = 0.45
\]
按照上面的计算方法可依次求出隐变量\(Z\),然后计算极大化的\(\theta^{(i)}\)。经过10次迭代,最终收敛。
4. 参考资料
[1] 李航,《统计学习方法》.
[2] Chuong B Do & Serafim Batzoglou, What is the expectation maximization algorithm?
[3] Pieter Abbeel, Maximum Likelihood (ML), Expectation Maximization (EM).
[4] Rudan Chen,【机器学习算法系列之一】EM算法实例分析.
【十大经典数据挖掘算法】EM的更多相关文章
- 【十大经典数据挖掘算法】PageRank
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 我特地把PageRank作为[十大经 ...
- 【十大经典数据挖掘算法】AdaBoost
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 集成学习 集成学习(ensem ...
- 【十大经典数据挖掘算法】SVM
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART SVM(Support Vector ...
- 【十大经典数据挖掘算法】Naïve Bayes
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 朴素贝叶斯(Naïve Bayes) ...
- 【十大经典数据挖掘算法】C4.5
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 决策树模型与学习 决策树(de ...
- 【十大经典数据挖掘算法】k-means
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 引言 k-means与kNN虽 ...
- 【十大经典数据挖掘算法】Apriori
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 关联分析 关联分析是一类非常有 ...
- 【十大经典数据挖掘算法】kNN
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 引言 顶级数据挖掘会议ICDM ...
- 【十大经典数据挖掘算法】CART
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 前言 分类与回归树(Class ...
随机推荐
- 【.net 深呼吸】程序集的热更新
当一个程序集被加载使用的时候,出于数据的完整性和安全性考虑,程序集文件(在99.9998%的情况下是.dll文件)会被锁定,如果此时你想更新程序集(实际上是替换dll文件),是不可以操作的,这时你得把 ...
- category中重写方法?
问:可以在category中重写方法吗? 答:代码上可以实现 在category中重写方法,但在实际开发中,不建议这样做.如果确实需要重写原有方法也建议使用子类进行重写. category是为了更方便 ...
- angular2系列教程(八)In-memory web api、HTTP服务、依赖注入、Observable
大家好,今天我们要讲是angular2的http功能模块,这个功能模块的代码不在angular2里面,需要我们另外引入: index.html <script src="lib/htt ...
- 用C语言封装OC对象(耐心阅读,非常重要)
用C语言封装OC对象(耐心阅读,非常重要) 本文的主要内容来自这里 前言 做iOS开发的朋友,对OC肯定非常了解,那么大家有没有想过OC中NSInteger,NSObject,NSString这些对象 ...
- PHP之购物车的代码
该文章记录了购物车的实现代码,仅供参考 book_sc_fns.php <?php include_once('output_fns.php'); include_once('book_fns. ...
- JS继承类相关试题
题目一: //有关于原型继承的代码如下:function Person(name) { this.name = name;}Person.prototype = { getName : f ...
- 使用mybatis-generator在自动生成Model类和Mapper文件
使用mybatis-generator插件可以很轻松的实现mybatis的逆向工程,即,能通过表结构自动生成对应的java类及mapper文件,可以大大提高工作效率,并且它提供了很多自定义的设置可以应 ...
- Openfiler配置RAC共享存储
将 Openfiler 用作 iSCSI 存储服务器,主要操作步骤如下: 1.设置 iSCSI 服务 2.配置网络访问 3.指定物理存储器并对其分区 4.创建新的卷组 5.创建所有逻辑卷 6.为每个逻 ...
- php利用root权限执行shell脚本
vi /etc/sudoers , 为apache用户赋予root权限,并且不需要密码,还有一步重要的修改(我被困扰的就是这个地方) root ALL=(ALL) ALL apache ALL= ...
- ASP.NET Core 中间件详解及项目实战
前言 在上篇文章主要介绍了DotNetCore项目状况,本篇文章是我们在开发自己的项目中实际使用的,比较贴合实际应用,算是对中间件的一个深入使用了,不是简单的Hello World,如果你觉得本篇文章 ...