【十大经典数据挖掘算法】系列

  1. C4.5
  2. K-Means
  3. SVM
  4. Apriori
  5. EM
  6. PageRank
  7. AdaBoost
  8. kNN
  9. Naïve Bayes
  10. CART

1. 极大似然

极大似然(Maximum Likelihood)估计为用于已知模型的参数估计的统计学方法。比如,我们想了解抛硬币是正面(head)的概率分布\(\theta\);那么可以通过最大似然估计方法求得。假如我们抛硬币\(10\)次,其中\(8\)次正面、\(2\)次反面;极大似然估计参数\(\theta\)值:

\[
\hat{\theta} = \arg\underset{\theta}{\max}\, l(\theta) = \arg\underset{\theta}{\max}\, \theta^8(1-\theta)^2
\]

其中,\(l(\theta)\)为观测变量序列的似然函数(likelihood function of the observation sequence)。对\(l(\theta)\)求偏导

\[
\frac{\partial l(\theta)}{\partial \theta} = \theta^7(1-\theta)(8-10\theta) \Rightarrow \hat{\theta} = 0.8
\]

因为似然函数\(l(\theta)\)不是凹函数(concave),求解极大值困难。一般地,使用与之具有相同单调性的log-likelihood,如图所示

凹函数(concave)与凸函数(convex)的定义如图所示:

从图中可以看出,凹函数“容易”求解极大值,凸函数“容易”求解极小值。

2. EM算法

EM算法(Expectation Maximization)是在含有隐变量(latent variable)的模型下计算最大似然的一种算法。所谓隐变量,是指我们没有办法观测到的变量。比如,有两枚硬币A、B,每一次随机取一枚进行抛掷,我们只能观测到硬币的正面与反面,而不能观测到每一次取的硬币是否为A;则称每一次的选择抛掷硬币为隐变量。

用Y表示观测数据,Z表示隐变量;Y和Z连在一起称为完全数据( complete-data ),观测数据Y又称为不完全数据(incomplete-data)。观测数据的似然函数:

\[
P(Y | \theta) = \sum_{Z} P(Z|\theta)P(Y|Z,\theta)
\]

求模型参数的极大似然估计:

\[
\hat{\theta} = \arg\underset{\theta}{\max}\, \log P(Y | \theta)
\]

因为含有隐变量,此问题无法求解。因此,Dempster等人提出EM算法用于迭代求解近似解。EM算法比较简单,分为两个步骤:

  • E步(E-step),以当前参数\(\theta^{(i)}\)计算\(Z\)的期望值

\[
Q(\theta, \theta^{(i)}) = \mathbb{E}_Z[\log P(Y,X|\theta)| Y, \theta^{(i)}]
\]

  • M步(M-step),求使\(Q(\theta, \theta^{(i)})\)极大化的\(\theta\),确定第\(i+1\)次迭代的参数的估计值\(\theta^{(i+1)}\)

\[
\theta^{(i+1)} = \arg\underset{\theta}{\max}\, Q(\theta, \theta^{(i)})
\]

如此迭代直至算法收敛。关于算法的推导及收敛性证明,可参看李航的《统计学习方法》及Andrew Ng的《CS229 Lecture notes》。这里有一些极大似然以及EM算法的生动例子。

3. 实例

[2]中给出极大似然与EM算法的实例。如图所示,有两枚硬币A、B,每一个实验随机取一枚抛掷10次,共5个实验,我们可以观测到每一次所取的硬币,估计参数A、B为正面的概率\(\theta = (\theta_A, \theta_B)\),根据极大似然估计求解

如果我们不能观测到每一次所取的硬币,只能用EM算法估计模型参数,算法流程如图所示:

隐变量\(Z\)为每次实验中选择A或B的概率,则第一个实验选择A的概率为

\[
P(z_1 = A |y_1, \theta^{(0)}) = \frac{P(z_1 = A |y_1, \theta^{(0)})}{P(z_1 = A |y_1, \theta^{(0)}) + P(z_1 = B |y_1, \theta^{(0)})} = \frac{0.6^5*0.4^5}{0.6^5*0.4^5 + 0.5^{10}} = 0.45
\]

按照上面的计算方法可依次求出隐变量\(Z\),然后计算极大化的\(\theta^{(i)}\)。经过10次迭代,最终收敛。

4. 参考资料

[1] 李航,《统计学习方法》.
[2] Chuong B Do & Serafim Batzoglou, What is the expectation maximization algorithm?
[3] Pieter Abbeel, Maximum Likelihood (ML), Expectation Maximization (EM).
[4] Rudan Chen,【机器学习算法系列之一】EM算法实例分析.

【十大经典数据挖掘算法】EM的更多相关文章

  1. 【十大经典数据挖掘算法】PageRank

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 我特地把PageRank作为[十大经 ...

  2. 【十大经典数据挖掘算法】AdaBoost

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 集成学习 集成学习(ensem ...

  3. 【十大经典数据挖掘算法】SVM

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART SVM(Support Vector ...

  4. 【十大经典数据挖掘算法】Naïve Bayes

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 朴素贝叶斯(Naïve Bayes) ...

  5. 【十大经典数据挖掘算法】C4.5

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 决策树模型与学习 决策树(de ...

  6. 【十大经典数据挖掘算法】k-means

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 引言 k-means与kNN虽 ...

  7. 【十大经典数据挖掘算法】Apriori

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 关联分析 关联分析是一类非常有 ...

  8. 【十大经典数据挖掘算法】kNN

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 引言 顶级数据挖掘会议ICDM ...

  9. 【十大经典数据挖掘算法】CART

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 前言 分类与回归树(Class ...

随机推荐

  1. C#中那些[举手之劳]的性能优化

    隔了很久没写东西了,主要是最近比较忙,更主要的是最近比较懒...... 其实这篇很早就想写了 工作和生活中经常可以看到一些程序猿,写代码的时候只关注代码的逻辑性,而不考虑运行效率 其实这对大多数程序猿 ...

  2. 【小计】新人Tostring前忘记Null判断的处理

    ToString和string.Concat(可屏蔽Null的异常)性能相差不大,一些中小项目完全可以用Concat(新人容易忘记判断Null的情况,遇到太多了,所以建议重写tostring方法,内部 ...

  3. 【原】AFNetworking源码阅读(一)

    [原]AFNetworking源码阅读(一) 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 AFNetworking版本:3.0.4 由于我平常并没有经常使用AFNetw ...

  4. Java 8 的 Nashorn 脚本引擎教程

    本文为了解所有关于 Nashorn JavaScript 引擎易于理解的代码例子. Nashorn JavaScript 引擎是Java SE 8的一部分,它与其它像Google V8 (它是Goog ...

  5. ASP.NET Core应用的错误处理[1]:三种呈现错误页面的方式

    由于ASP.NET Core应用是一个同时处理多个请求的服务器应用,所以在处理某个请求过程中抛出的异常并不会导致整个应用的终止.出于安全方面的考量,为了避免敏感信息的外泄,客户端在默认的情况下并不会得 ...

  6. Spark踩坑记——数据库(Hbase+Mysql)

    [TOC] 前言 在使用Spark Streaming的过程中对于计算产生结果的进行持久化时,我们往往需要操作数据库,去统计或者改变一些值.最近一个实时消费者处理任务,在使用spark streami ...

  7. AbpZero--1.如何开始

    1.加群 群号:104390185,下载这个文件并解压 用VS2015打开aspnet-zero-1.9.0.1 2.修改Web项目web.config连接字符串 <add name=" ...

  8. eclipse如何添加Memory Analyzer

    ①启动Eclipse,并打开"Install New software..."对话框: ②点击Add,如图: ③点击OK,最后一直点next,完成

  9. (转载) Linux IO模式及 select、poll、epoll详解

    注:本文是对众多博客的学习和总结,可能存在理解错误.请带着怀疑的眼光,同时如果有错误希望能指出. 同步IO和异步IO,阻塞IO和非阻塞IO分别是什么,到底有什么区别?不同的人在不同的上下文下给出的答案 ...

  10. Linux网络驱动--snull

    snull是<Linux Device Drivers>中的一个网络驱动的例子.这里引用这个例子学习Linux网络驱动. 因为snull的源码,网上已经更新到适合最新内核,而我自己用的还是 ...