Curling 2.0

Description
On Planet MM-21, after their Olympic games this year, curling is getting popular. But the rules are somewhat different from ours. The game is played on an ice game board on which a square mesh is marked. They use only a single stone. The purpose of the game is to lead the stone from the start to the goal with the minimum number of moves.
Fig. 1 shows an example of a game board. Some squares may be occupied with blocks. There are two special squares namely the start and the goal, which are not occupied with blocks. (These two squares are distinct.) Once the stone begins to move, it will proceed until it hits a block. In order to bring the stone to the goal, you may have to stop the stone by hitting it against a block, and throw again.
Fig. 1: Example of board (S: start, G: goal)
The movement of the stone obeys the following rules:
    At the beginning, the stone stands still at the start square.
    The movements of the stone are restricted to x and y directions. Diagonal moves are prohibited.
    When the stone stands still, you can make it moving by throwing it. You may throw it to any direction unless it is blocked immediately(Fig. 2(a)).
    Once thrown, the stone keeps moving to the same direction until one of the following occurs:
        The stone hits a block (Fig. 2(b), (c)).
            The stone stops at the square next to the block it hit.
            The block disappears.
        The stone gets out of the board.
            The game ends in failure.
        The stone reaches the goal square.
            The stone stops there and the game ends in success.
    You cannot throw the stone more than 10 times in a game. If the stone does not reach the goal in 10 moves, the game ends in failure.
Fig. 2: Stone movements
Under the rules, we would like to know whether the stone at the start can reach the goal and, if yes, the minimum number of moves required.
With the initial configuration shown in Fig. 1, 4 moves are required to bring the stone from the start to the goal. The route is shown in Fig. 3(a). Notice when the stone reaches the goal, the board configuration has changed as in Fig. 3(b).
Fig. 3: The solution for Fig. D-1 and the final board configuration
Input
The input is a sequence of datasets. The end of the input is indicated by a line containing two zeros separated by a space. The number of datasets never exceeds 100.
Each dataset is formatted as follows.
    the width(=w) and the height(=h) of the board
    First row of the board
    ...
    h-th row of the board
The width and the height of the board satisfy: 2 <= w <= 20, 1 <= h <= 20.
Each line consists of w decimal numbers delimited by a space. The number describes the status of the corresponding square.
    0     vacant square
    1     block
    2     start position
    3     goal position
The dataset for Fig. D-1 is as follows:
    6 6
    1 0 0 2 1 0
    1 1 0 0 0 0
    0 0 0 0 0 3
    0 0 0 0 0 0
    1 0 0 0 0 1
    0 1 1 1 1 1
Output
For each dataset, print a line having a decimal integer indicating the minimum number of moves along a route from the start to the goal. If there are no such routes, print -1 instead. Each line should not have any character other than this number.
Sample Input
2 1
3 2
6 6
1 0 0 2 1 0
1 1 0 0 0 0
0 0 0 0 0 3
0 0 0 0 0 0
1 0 0 0 0 1
0 1 1 1 1 1
6 1
1 1 2 1 1 3
6 1
1 0 2 1 1 3
12 1
2 0 1 1 1 1 1 1 1 1 1 3
13 1
2 0 1 1 1 1 1 1 1 1 1 1 3
0 0
Sample Output
1
4
-1
4
10
-1

题目大意:

    就是要求把一个冰壶从起点“2”用最少的步数移动到终点“3”

    其中0为移动区域,1为石头区域,冰壶一旦想着某个方向运动就不会停止,也不会改变方向(想想冰壶在冰上滑动)

    除非冰壶撞到石头1 或者 到达终点 3

    撞到石头后,石头会碎掉,并且冰壶停在石头前面一格。

解题思路:

    DFS。

Code:

 /*************************************************************************
> File Name: poj3009.cpp
> Author: Enumz
> Mail: 369372123@qq.com
> Created Time: 2014年10月26日 星期日 21时37分15秒
************************************************************************/
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<string>
#include<cstring>
#include<list>
#include<queue>
#include<stack>
//#include<map>
#include<set>
#include<algorithm>
#include<cmath>
#define MAXN 50
using namespace std;
struct Point
{
int x,y;
} begin,end,dir[];
int map[MAXN][MAXN];
int N,M;
int cnt=;
bool dfs(Point begin,Point end,int step)
{
if (step>=) return false;
Point tmp;
for (int i=; i<=; i++)
{
tmp=begin;
if (map[tmp.x+dir[i].x][tmp.y+dir[i].y]!=)
{
while ()
{
tmp.x+=dir[i].x;
tmp.y+=dir[i].y;
if (tmp.x==end.x&&tmp.y==end.y)
{
cnt=cnt>step+?step+:cnt;
return true;
}
if (map[tmp.x+dir[i].x][tmp.y+dir[i].y]==)
break;
}
if (tmp.x+dir[i].x<=M&&tmp.x+dir[i].x>=
&&tmp.y+dir[i].y<=N&&tmp.y+dir[i].y>=)
{
map[tmp.x+dir[i].x][tmp.y+dir[i].y]=;
dfs(tmp,end,step+);
map[tmp.x+dir[i].x][tmp.y+dir[i].y]=;
}
}
}
return false;
}
void init()
{
dir[].x=,dir[].y=;
dir[].x=,dir[].y=-;
dir[].x=,dir[].y=;
dir[].x=-,dir[].y=;
}
int main()
{
init();
while (cin>>N>>M)
{
if (!N&&!M) break;
for (int i=; i<=; i++)
for (int j=; j<=; j++)
map[i][j]=;
for (int i=; i<=M; i++)
for (int j=; j<=N; j++)
{
scanf("%d",&map[i][j]);
if (map[i][j]==)
{
begin.x=i;
begin.y=j;
map[i][j]=;
}
if (map[i][j]==)
{
end.x=i;
end.y=j;
}
}
int step=;
cnt=;
dfs(begin,end,step);
if (cnt!=) cout<<cnt<<endl;
else cout<<"-1"<<endl;
}
return ;
}

POJ3009——Curling 2.0(DFS)的更多相关文章

  1. POJ3009 Curling 2.0(DFS)

    迷宫问题求最短路. 略有不同的是假设不碰到石头的话会沿着一个方向一直前进,出界就算输了.碰到石头,前方石头会消失,冰壶停在原地. 把这个当作状态的转移. DFS能够求出其最小操作数. #include ...

  2. POJ-3009 Curling 2.0 (DFS)

    Description On Planet MM-21, after their Olympic games this year, curling is getting popular. But th ...

  3. poj3009 Curling 2.0 (DFS按直线算步骤)

    Curling 2.0 Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 14563   Accepted: 6080 Desc ...

  4. 【POJ】3009 Curling 2.0 ——DFS

    Curling 2.0 Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11432   Accepted: 4831 Desc ...

  5. Curling 2.0(dfs回溯)

    Curling 2.0 Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 15567   Accepted: 6434 Desc ...

  6. poj3009 Curling 2.0(很好的题 DFS)

    https://vjudge.net/problem/POJ-3009 做完这道题,感觉自己对dfs的理解应该又深刻了. 1.一般来说最小步数都用bfs求,但是这题因为状态记录很麻烦,所以可以用dfs ...

  7. POJ3009 Curling 2.0(DFS)

    题目链接. 分析: 本题BFS A不了. 00100 00001 01020 00000 00010 00010 00010 00010 00030 对于这样的数据,本来应当是 5 步,但bfs却 4 ...

  8. Curling 2.0(dfs)

    Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8795   Accepted: 3692 Description On Pl ...

  9. POJ3009 Curling 2.0

    正式做POJ的第一题,做出来后又看了别人的代码,就又完善了一下,也通过了.参考 http://blog.sina.com.cn/s/blog_4abcd9bc0100phzb.html 改了之后觉得写 ...

随机推荐

  1. Global::pickClassMethod_DNT

    /*************************************************** Created Date: 19 Jul 2013 Created By: Jimmy Xie ...

  2. 开发流程习惯的养成—TFS简单使用

    才开始用,所以是个很基础的介绍,欢迎大家一起交流学习 一.追本溯源 讲到开发流程,还要从敏捷开始,因为敏捷才有了开发流程的重视,整个流程也是按照敏捷的思想进行的,这里不再叙述敏捷的定义 敏捷的流程(个 ...

  3. SQLite数据库的加密【转】

    1.创建空的SQLite数据库. //数据库名的后缀你可以直接指定,甚至没有后缀都可以 //方法一:创建一个空sqlite数据库,用IO的方式 FileStream fs = File.Create( ...

  4. innobackupex:Error:xtrabackup child process has died at /usr/bin/innobackupex

    使用innobackupex进行数据库备份,报如下错误:innobackupex --compress --parallel=4  --user=root  --password=yoon /expo ...

  5. swap分区添加

    首先你需要使用命令:dd 来创建一个swapfile,然后你需要使用mkswap命令在设备或者文件中创建一个Linux swap分区a) 使用root用户登陆b) 使用下面的命令创建一个2G的 Swa ...

  6. c++各种排序

    1.插入排序 void InsertSort(int a[], int n) { int temp, i, j; ; i < n; i++) { ]) { temp = a[i]; ; j &g ...

  7. 51nod 1257 背包问题 V3

    1257 背包问题 V3 基准时间限制:3 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 N个物品的体积为W1,W2......Wn(Wi为整数),与之相对应的价值为P1,P2.. ...

  8. cocos3.2中如何创建一个场景

    1.可以将一些比较通用的东西放到Common.h中,这是一个.h文件,必须手动添加,且保证在classes目录里 #ifndef __COMMON_H__ #define __COMMON_H__ # ...

  9. c#之委托和事件的区别

    1.什么是委托,这里就不做介绍了,如果想了解可以查看博客:http://www.cnblogs.com/xiaoxiaogogo/p/3571494.html 下面开始对事件进行介绍 1.定义事件以及 ...

  10. 屌丝IT男

    偶尔翻到豆瓣里一篇对中国屌丝的批评,突然想到当年美国那个垮掉的一代,吸毒,淫乱,绝望的生存,而如今我们苦逼的80后自诩为屌丝的时候,也不想想每一个堕落的时代还是有牛逼的人存在,中国的大学,绝大部分在逃 ...