堆排序快速排序归并排序一样都是时间复杂度为O(N*logN)的几种常见排序方法。学习堆排序前,先讲解下什么是数据结构中的二叉堆。

二叉堆的定义

二叉堆是完全二叉树或者是近似完全二叉树。

二叉堆满足二个特性:

1.父结点的键值总是大于或等于(小于或等于)任何一个子节点的键值。

2.每个结点的左子树和右子树都是一个二叉堆(都是最大堆或最小堆)。

当父结点的键值总是大于或等于任何一个子节点的键值时为最大堆。当父结点的键值总是小于或等于任何一个子节点的键值时为最小堆。下图展示一个最小堆:

由于其它几种堆(二项式堆,斐波纳契堆等)用的较少,一般将二叉堆就简称为堆。

堆的存储

一般都用数组来表示堆,i结点的父结点下标就为(i – 1) / 2。它的左右子结点下标分别为2 * i + 1和2 * i + 2。如第0个结点左右子结点下标分别为1和2。

堆的操作——插入删除

下面先给出《数据结构C++语言描述》中最小堆的建立插入删除的图解,再给出本人的实现代码,最好是先看明白图后再去看代码。

堆的插入

每次插入都是将新数据放在数组最后。可以发现从这个新数据的父结点到根结点必然为一个有序的数列,现在的任务是将这个新数据插入到这个有序数据中——这就类似于直接插入排序中将一个数据并入到有序区间中,对照《白话经典算法系列之二 直接插入排序的三种实现》不难写出插入一个新数据时堆的调整代码:

更简短的表达为:

void MinHeapFixup(int a[], int i)
{
for (int j = (i - ) / ; (j >= && i != )&& a[i] > a[j]; i = j, j = (i - ) / )
Swap(a[i], a[j]);
}

插入时:

//在最小堆中加入新的数据nNum
void MinHeapAddNumber(int a[], int n, int nNum)
{
a[n] = nNum;
MinHeapFixup(a, n);
}

堆的删除

按定义,堆中每次都只能删除第0个数据。为了便于重建堆,实际的操作是将最后一个数据的值赋给根结点,然后再从根结点开始进行一次从上向下的调整。调整时先在左右儿子结点中找最小的,如果父结点比这个最小的子结点还小说明不需要调整了,反之将父结点和它交换后再考虑后面的结点。相当于从根结点将一个数据的“下沉”过程。下面给出代码:

堆化数组

有了堆的插入和删除后,再考虑下如何对一个数据进行堆化操作。要一个一个的从数组中取出数据来建立堆吧,不用!先看一个数组,如下图:

很明显,对叶子结点来说,可以认为它已经是一个合法的堆了即20,60, 65, 4, 49都分别是一个合法的堆。只要从A[4]=50开始向下调整就可以了。然后再取A[3]=30,A[2] = 17,A[1] = 12,A[0] = 9分别作一次向下调整操作就可以了。下图展示了这些步骤:

写出堆化数组的代码:

//建立最小堆
void MakeMinHeap(int a[], int n)
{
for (int i = n / - ; i >= ; i--)
MinHeapFixdown(a, i, n);
}

至此,堆的操作就全部完成了(注1),再来看下如何用堆这种数据结构来进行排序。

堆排序

首先可以看到堆建好之后堆中第0个数据是堆中最小的数据。取出这个数据再执行下堆的删除操作。这样堆中第0个数据又是堆中最小的数据,重复上述步骤直至堆中只有一个数据时就直接取出这个数据。

由于堆也是用数组模拟的,故堆化数组后,第一次将A[0]与A[n - 1]交换,再对A[0…n-2]重新恢复堆。第二次将A[0]与A[n – 2]交换,再对A[0…n - 3]重新恢复堆,重复这样的操作直到A[0]与A[1]交换。由于每次都是将最小的数据并入到后面的有序区间,故操作完成后整个数组就有序了。有点类似于直接选择排序

void MinheapsortTodescendarray(int a[], int n)
{
for (int i = n - ; i >= ; i--)
{
Swap(a[i], a[]);
MinHeapFixdown(a, , i);
}
}

注意使用最小堆排序后是递减数组,要得到递增数组,可以使用最大堆。

由于每次重新恢复堆的时间复杂度为O(logN),共N - 1次重新恢复堆操作,再加上前面建立堆时N / 2次向下调整,每次调整时间复杂度也为O(logN)。二次操作时间相加还是O(N * logN)。故堆排序的时间复杂度为O(N * logN)。STL也实现了堆的相关函数,可以参阅《STL系列之四 heap 堆》。

注1 作为一个数据结构,最好用类将其数据和方法封装起来,这样即便于操作,也便于理解。此外,除了堆排序要使用堆,另外还有很多场合可以使用堆来方便和高效的处理数据,以后会一一介绍。

转载请标明出处,原文地址:http://blog.csdn.net/morewindows/article/details/6709644

Python 堆与堆排序的更多相关文章

  1. python下实现二叉堆以及堆排序

    python下实现二叉堆以及堆排序 堆是一种特殊的树形结构, 堆中的数据存储满足一定的堆序.堆排序是一种选择排序, 其算法复杂度, 时间复杂度相对于其他的排序算法都有很大的优势. 堆分为大头堆和小头堆 ...

  2. Python -- 堆数据结构 heapq - I love this game! - 博客频道 - CSDN.NET

    Python -- 堆数据结构 heapq - I love this game! - 博客频道 - CSDN.NET Python -- 堆数据结构 heapq 分类: Python 2012-09 ...

  3. Python -堆的实现

    最小(大)堆是按完全二叉树的排序顺序的方式排布堆中元素的,并且满足:ai  >a(2i+1)  and ai>a(2i+2)( ai  <a(2i+1)  and ai<a(2 ...

  4. Python 实现转堆排序算法原理及时间复杂度(多图解释)

    原创文章出自公众号:「码农富哥」,欢迎转载和关注,如转载请注明出处! 堆基本概念 堆排序是一个很重要的排序算法,它是高效率的排序算法,复杂度是O(nlogn),堆排序不仅是面试进场考的重点,而且在很多 ...

  5. 利用堆实现堆排序&amp;优先队列

    数据结构之(二叉)堆一文在末尾提到"利用堆能够实现:堆排序.优先队列.".本文代码实现之. 1.堆排序 如果要实现非递减排序.则须要用要大顶堆. 此处设计到三个大顶堆的操作:(1) ...

  6. 堆与堆排序/Heap&Heap sort

    最近在自学算法导论,看到堆排序这一章,来做一下笔记.堆排序是一种时间复杂度为O(lgn)的原址排序算法.它使用了一种叫做堆的数据结构.堆排序具有空间原址性,即指任何时候都需要常数个额外的元素空间存储临 ...

  7. 基本数据结构 —— 堆以及堆排序(C++实现)

    目录 什么是堆 堆的存储 堆的操作 结构体定义 判断是否为空 往堆中插入元素 从堆中删除元素 取出堆中最大的元素 堆排序 测试代码 例题 参考资料 什么是堆 堆(英语:heap)是计算机科学中一类特殊 ...

  8. 堆与堆排序、Top k 问题

     堆排序与快速排序,归并排序一样都是时间复杂度为O(N*logN)的几种常见排序方法.学习堆排序前,先讲解下什么是数据结构中的二叉堆. 二叉堆的定义 二叉堆是完全二叉树或者是近似完全二叉树. 二叉堆满 ...

  9. PHP面试:说下什么是堆和堆排序?

    堆是什么? 堆是基于树抽象数据类型的一种特殊的数据结构,用于许多算法和数据结构中.一个常见的例子就是优先队列,还有排序算法之一的堆排序.这篇文章我们将讨论堆的属性.不同类型的堆以及堆的常见操作.另外我 ...

随机推荐

  1. JavaScript闭包简单应用

    闭包定义 在JavaScript中,当一个内部函数被其外部函数之外的变量引用时,就形成了一个闭包.简单说,闭包就是能够读取其他函数内部变量的函数. 闭包的作用: 1. 可以读取函数内部的变量 2. 让 ...

  2. Spring的单例模式底层实现学习笔记

    单例模式也属于创建型模式,所谓单例,顾名思义,所指的就是单个实例,也就是说要保证一个类仅有一个实例.单例模式有以下的特点:①单例类只能有一个实例②单例类必须自己创建自己的唯一实例③单例类必须给所有其他 ...

  3. 设计模式 笔记 装饰模式 Decorator

    //---------------------------15/04/17---------------------------- //Decorator 装饰模式----对象结构型模式 /* 1:意 ...

  4. Javascript如何实现GPU加速?

    一.什么是Javascript实现GPU加速? CPU与GPU设计目标不同,导致它们之间内部结构差异很大.CPU需要应对通用场景,内部结构非常复杂.而GPU往往面向数据类型统一,且相互无依赖的计算.所 ...

  5. 【绝对给力】Android开发免豆资料(教程+工具+源码)地址汇总

    教程下载: [免费]android界面效果全汇总.pdf http://down.51cto.com/data/209179 Android终极开发教程[pdf高清版] http://down.51c ...

  6. SpringBoot日记——MQ消息队列整合(二)

    基于第一篇文章搭建好环境以后,我们这篇文章继续介绍如何在springboot中使用RabbitMQ. 1).单播:添加好pom文件和自定义配置后,来看: @Autowired RabbitTempla ...

  7. Seay源代码审计系统的配置和安装

    2014年7月31日 Seay源代码审计系统2.1 时隔刚好一年之久,源代码审计系统再次更新,这次主要优化审计体验,优化了漏洞规则,算是小幅更新,原来使用者打开程序会提示自动更新. 1.优化原有规则, ...

  8. 怎么理解LAXCUS大操作系统系统在云计算体系中的定位

    最近一直在做laxcus大数据操作系统的分布式应用开发,因为做得多了,感触也多了.按照云计算三层定义,即iaas(基础设施即服务).paas(平台即服务).saas(软件即服务),laxcus属于pa ...

  9. 读C#程序最小公倍数答案就是:2123581660200

    阅读下面程序,请回答如下问题: 问题1:这个程序要找的是符合什么条件的数? 问题2:这样的数存在么?符合这一条件的最小的数是什么? 问题3:在电脑上运行这一程序,你估计多长时间才能输出第一个结果?时间 ...

  10. Software-Defined Networking:A Comprehensive Survey--Day3

    (接Day2的内容 +2s) E. Layer V: Northbound Interfaces 南行接口已经得到广泛接受(OpenFlow),但现在就定义北向接口还为时尚早,开发不同的控制器经验一定 ...