Python 堆与堆排序
堆排序与快速排序,归并排序一样都是时间复杂度为O(N*logN)的几种常见排序方法。学习堆排序前,先讲解下什么是数据结构中的二叉堆。
二叉堆的定义
二叉堆是完全二叉树或者是近似完全二叉树。
二叉堆满足二个特性:
1.父结点的键值总是大于或等于(小于或等于)任何一个子节点的键值。
2.每个结点的左子树和右子树都是一个二叉堆(都是最大堆或最小堆)。
当父结点的键值总是大于或等于任何一个子节点的键值时为最大堆。当父结点的键值总是小于或等于任何一个子节点的键值时为最小堆。下图展示一个最小堆:
由于其它几种堆(二项式堆,斐波纳契堆等)用的较少,一般将二叉堆就简称为堆。
堆的存储
一般都用数组来表示堆,i结点的父结点下标就为(i – 1) / 2。它的左右子结点下标分别为2 * i + 1和2 * i + 2。如第0个结点左右子结点下标分别为1和2。
堆的操作——插入删除
下面先给出《数据结构C++语言描述》中最小堆的建立插入删除的图解,再给出本人的实现代码,最好是先看明白图后再去看代码。
堆的插入
每次插入都是将新数据放在数组最后。可以发现从这个新数据的父结点到根结点必然为一个有序的数列,现在的任务是将这个新数据插入到这个有序数据中——这就类似于直接插入排序中将一个数据并入到有序区间中,对照《白话经典算法系列之二 直接插入排序的三种实现》不难写出插入一个新数据时堆的调整代码:
更简短的表达为:
void MinHeapFixup(int a[], int i)
{
for (int j = (i - ) / ; (j >= && i != )&& a[i] > a[j]; i = j, j = (i - ) / )
Swap(a[i], a[j]);
}
插入时:
//在最小堆中加入新的数据nNum
void MinHeapAddNumber(int a[], int n, int nNum)
{
a[n] = nNum;
MinHeapFixup(a, n);
}
堆的删除
按定义,堆中每次都只能删除第0个数据。为了便于重建堆,实际的操作是将最后一个数据的值赋给根结点,然后再从根结点开始进行一次从上向下的调整。调整时先在左右儿子结点中找最小的,如果父结点比这个最小的子结点还小说明不需要调整了,反之将父结点和它交换后再考虑后面的结点。相当于从根结点将一个数据的“下沉”过程。下面给出代码:
堆化数组
有了堆的插入和删除后,再考虑下如何对一个数据进行堆化操作。要一个一个的从数组中取出数据来建立堆吧,不用!先看一个数组,如下图:
很明显,对叶子结点来说,可以认为它已经是一个合法的堆了即20,60, 65, 4, 49都分别是一个合法的堆。只要从A[4]=50开始向下调整就可以了。然后再取A[3]=30,A[2] = 17,A[1] = 12,A[0] = 9分别作一次向下调整操作就可以了。下图展示了这些步骤:
写出堆化数组的代码:
//建立最小堆
void MakeMinHeap(int a[], int n)
{
for (int i = n / - ; i >= ; i--)
MinHeapFixdown(a, i, n);
}
至此,堆的操作就全部完成了(注1),再来看下如何用堆这种数据结构来进行排序。
堆排序
首先可以看到堆建好之后堆中第0个数据是堆中最小的数据。取出这个数据再执行下堆的删除操作。这样堆中第0个数据又是堆中最小的数据,重复上述步骤直至堆中只有一个数据时就直接取出这个数据。
由于堆也是用数组模拟的,故堆化数组后,第一次将A[0]与A[n - 1]交换,再对A[0…n-2]重新恢复堆。第二次将A[0]与A[n – 2]交换,再对A[0…n - 3]重新恢复堆,重复这样的操作直到A[0]与A[1]交换。由于每次都是将最小的数据并入到后面的有序区间,故操作完成后整个数组就有序了。有点类似于直接选择排序。
void MinheapsortTodescendarray(int a[], int n)
{
for (int i = n - ; i >= ; i--)
{
Swap(a[i], a[]);
MinHeapFixdown(a, , i);
}
}
注意使用最小堆排序后是递减数组,要得到递增数组,可以使用最大堆。
由于每次重新恢复堆的时间复杂度为O(logN),共N - 1次重新恢复堆操作,再加上前面建立堆时N / 2次向下调整,每次调整时间复杂度也为O(logN)。二次操作时间相加还是O(N * logN)。故堆排序的时间复杂度为O(N * logN)。STL也实现了堆的相关函数,可以参阅《STL系列之四 heap 堆》。
注1 作为一个数据结构,最好用类将其数据和方法封装起来,这样即便于操作,也便于理解。此外,除了堆排序要使用堆,另外还有很多场合可以使用堆来方便和高效的处理数据,以后会一一介绍。
转载请标明出处,原文地址:http://blog.csdn.net/morewindows/article/details/6709644
Python 堆与堆排序的更多相关文章
- python下实现二叉堆以及堆排序
python下实现二叉堆以及堆排序 堆是一种特殊的树形结构, 堆中的数据存储满足一定的堆序.堆排序是一种选择排序, 其算法复杂度, 时间复杂度相对于其他的排序算法都有很大的优势. 堆分为大头堆和小头堆 ...
- Python -- 堆数据结构 heapq - I love this game! - 博客频道 - CSDN.NET
Python -- 堆数据结构 heapq - I love this game! - 博客频道 - CSDN.NET Python -- 堆数据结构 heapq 分类: Python 2012-09 ...
- Python -堆的实现
最小(大)堆是按完全二叉树的排序顺序的方式排布堆中元素的,并且满足:ai >a(2i+1) and ai>a(2i+2)( ai <a(2i+1) and ai<a(2 ...
- Python 实现转堆排序算法原理及时间复杂度(多图解释)
原创文章出自公众号:「码农富哥」,欢迎转载和关注,如转载请注明出处! 堆基本概念 堆排序是一个很重要的排序算法,它是高效率的排序算法,复杂度是O(nlogn),堆排序不仅是面试进场考的重点,而且在很多 ...
- 利用堆实现堆排序&优先队列
数据结构之(二叉)堆一文在末尾提到"利用堆能够实现:堆排序.优先队列.".本文代码实现之. 1.堆排序 如果要实现非递减排序.则须要用要大顶堆. 此处设计到三个大顶堆的操作:(1) ...
- 堆与堆排序/Heap&Heap sort
最近在自学算法导论,看到堆排序这一章,来做一下笔记.堆排序是一种时间复杂度为O(lgn)的原址排序算法.它使用了一种叫做堆的数据结构.堆排序具有空间原址性,即指任何时候都需要常数个额外的元素空间存储临 ...
- 基本数据结构 —— 堆以及堆排序(C++实现)
目录 什么是堆 堆的存储 堆的操作 结构体定义 判断是否为空 往堆中插入元素 从堆中删除元素 取出堆中最大的元素 堆排序 测试代码 例题 参考资料 什么是堆 堆(英语:heap)是计算机科学中一类特殊 ...
- 堆与堆排序、Top k 问题
堆排序与快速排序,归并排序一样都是时间复杂度为O(N*logN)的几种常见排序方法.学习堆排序前,先讲解下什么是数据结构中的二叉堆. 二叉堆的定义 二叉堆是完全二叉树或者是近似完全二叉树. 二叉堆满 ...
- PHP面试:说下什么是堆和堆排序?
堆是什么? 堆是基于树抽象数据类型的一种特殊的数据结构,用于许多算法和数据结构中.一个常见的例子就是优先队列,还有排序算法之一的堆排序.这篇文章我们将讨论堆的属性.不同类型的堆以及堆的常见操作.另外我 ...
随机推荐
- Hadoop日记Day11---主从节点接口分析
一.NameNode 的接口分析 1. NameNode本质 经过前面的学习,可以知道NameNode 本身就是一个java 进程.观察RPC.getServer()方法的第一个参数,发现是this, ...
- linux中wget的使用方法介绍
wget是在Linux下开发的开放源代码的软件,作者是Hrvoje Niksic,后来被移植到包括Windows在内的各个平台上.它有以下功能和特点:(1)支持断点下传功能:这一点,也是网络蚂蚁和Fl ...
- tree的使用,显示行号,find命令应用
第1章 linux启动过程 1.开机自检bios 2.mbr引导 3.GRUB 菜单:选择不同的内核 4.加载内核 5.运行init进程 6.读取/etc/inittab运行级别配置文件 7.执行 / ...
- pandas 初识(一)
基本内容 Series: Series 是有一组数据(numpy的数据类型 numpy.ndarray)以及一组数据标签(即索引)组成,可以看成一个一个定长的有序字典(索引值到数据值的一个映射) ob ...
- selenium+ python自动化--断言assertpy
前言: 在对登录验证时,不知道为何原因用unittest的断言不成功,就在网上发现这个assertpy,因此做个笔记 准备: pip install assertypy 例子: from assert ...
- 树莓派Raspberry Pi微改款,Model B 3+规格探析
18年3月树莓派基金会推出了ModelB 3+版的新款树莓派单板计算机.从编号数字上看,3+仅是3的再提升,在规格上有小幅异动,究竟改进或提升了哪些部分,本文将对此进行探讨. 树莓派版本观察 从过往的 ...
- Kaggle入门(一)——Digit Recognizer
目录 0 前言 1 简介 2 数据准备 2.1 导入数据 2.2 检查空值 2.3 正则化 Normalization 2.4 更改数据维度 Reshape 2.5 标签编码 2.6 分割交叉验证集 ...
- 求二维数组联通子数组和的最大值 (联通涂色) beta!
算法十分臃肿,效率捉鸡,不知用了多少循环,还有bug...任重道远,编程之美. 思想:按行遍历,找出每行的最大子数组.若行间都联通,行最大子数组相加后,再加上独立的正数.若行间不连通,找出较大子路径, ...
- 第二个spring冲刺第9天
其中一个队员在检查程序的BUG途中发现了几个重要的BUG比如答案乱码.程序闪退,弹出黑幕.于是我们决定先把这些问题解决再继续开发其他功能
- Java认识对象
一.类与对象 java中有基本类型和类类型两个类型系统.Java撰写程序几乎都在使用对象,要产生对象必须先定义类,类是对象的设计图,对象是类的实例 1.定义类 类定义使用的关键词为class,建立实例 ...