深度学习原理与框架-Tensorflow基本操作-Tensorflow中的变量
1.tf.Variable([[1, 2]]) # 创建一个变量
参数说明:[[1, 2]] 表示输入的数据,为一行二列的数据
2.tf.global_variables_initializer() 进行变量全局的初始化操作
参数说明:如果代码中存在变量,那么一定需要进行初始化操作
3.tf.matmul(w, x) # 进行数据的点乘操作
参数说明:w,x表示需要进行点乘的矩阵
4.sess = tf.Session() 执行操作的函数
参数说明:通常使用sess.run() 进行参数的执行操作
代码:
第一步:使用tf.Variable()构造两个变量
第二步:使用tf.matmul() 对两个变量进行点乘操作
第三步:使用tf.global_variable_initializer()构造初始化变量init
第四步:构造tf.Session() 等于sess,执行函数
第五步:使用sess.run执行初始化操作,同时执行y,进行点乘操作,打印结果
import tensorflow as tf # 第一步:创建两个变量
w = tf.Variable([[1.0, 0.5]])
x = tf.Variable([[2.0], [2.0]])
# 第二步:使用tf.matmul进行点乘操作
y = tf.matmul(w, x) # 第三步:对于变量必须要进行初始化操作
init = tf.global_variables_initializer()
# 第四步:使用tf.Session()构造执行函数
with tf.Session() as sess:
# 第五步:执行变量初始化和点乘操作,并进行打印
sess.run(init)
print(y.eval())
print(sess.run(y))
代码输出结果
深度学习原理与框架-Tensorflow基本操作-Tensorflow中的变量的更多相关文章
- 深度学习原理与框架-Tensorflow基本操作-mnist数据集的逻辑回归 1.tf.matmul(点乘操作) 2.tf.equal(对应位置是否相等) 3.tf.cast(将布尔类型转换为数值类型) 4.tf.argmax(返回最大值的索引) 5.tf.nn.softmax(计算softmax概率值) 6.tf.train.GradientDescentOptimizer(损失值梯度下降器)
1. tf.matmul(X, w) # 进行点乘操作 参数说明:X,w都表示输入的数据, 2.tf.equal(x, y) # 比较两个数据对应位置的数是否相等,返回值为True,或者False 参 ...
- 深度学习原理与框架-Tensorflow基本操作-实现线性拟合
代码:使用tensorflow进行数据点的线性拟合操作 第一步:使用np.random.normal生成正态分布的数据 第二步:将数据分为X_data 和 y_data 第三步:对参数W和b, 使用t ...
- 深度学习原理与框架-Tensorflow基本操作-变量常用操作 1.tf.random_normal(生成正态分布随机数) 2.tf.random_shuffle(进行洗牌操作) 3. tf.assign(赋值操作) 4.tf.convert_to_tensor(转换为tensor类型) 5.tf.add(相加操作) tf.divide(相乘操作) 6.tf.placeholder(输入数据占位
1. 使用tf.random_normal([2, 3], mean=-1, stddev=4) 创建一个正态分布的随机数 参数说明:[2, 3]表示随机数的维度,mean表示平均值,stddev表示 ...
- 深度学习原理与框架-Tensorflow卷积神经网络-cifar10图片分类(代码) 1.tf.nn.lrn(局部响应归一化操作) 2.random.sample(在列表中随机选值) 3.tf.one_hot(对标签进行one_hot编码)
1.tf.nn.lrn(pool_h1, 4, bias=1.0, alpha=0.001/9.0, beta=0.75) # 局部响应归一化,使用相同位置的前后的filter进行响应归一化操作 参数 ...
- 深度学习原理与框架-Tensorflow卷积神经网络-卷积神经网络mnist分类 1.tf.nn.conv2d(卷积操作) 2.tf.nn.max_pool(最大池化操作) 3.tf.nn.dropout(执行dropout操作) 4.tf.nn.softmax_cross_entropy_with_logits(交叉熵损失) 5.tf.truncated_normal(两个标准差内的正态分布)
1. tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME') # 对数据进行卷积操作 参数说明:x表示输入数据,w表示卷积核, stride ...
- 深度学习原理与框架-Tensorflow卷积神经网络-神经网络mnist分类
使用tensorflow构造神经网络用来进行mnist数据集的分类 相比与上一节讲到的逻辑回归,神经网络比逻辑回归多了隐藏层,同时在每一个线性变化后添加了relu作为激活函数, 神经网络使用的损失值为 ...
- 深度学习原理与框架-图像补全(原理与代码) 1.tf.nn.moments(求平均值和标准差) 2.tf.control_dependencies(先执行内部操作) 3.tf.cond(判别执行前或后函数) 4.tf.nn.atrous_conv2d 5.tf.nn.conv2d_transpose(反卷积) 7.tf.train.get_checkpoint_state(判断sess是否存在
1. tf.nn.moments(x, axes=[0, 1, 2]) # 对前三个维度求平均值和标准差,结果为最后一个维度,即对每个feature_map求平均值和标准差 参数说明:x为输入的fe ...
- 深度学习原理与框架-Alexnet(迁移学习代码) 1.sys.argv[1:](控制台输入的参数获取第二个参数开始) 2.tf.split(对数据进行切分操作) 3.tf.concat(对数据进行合并操作) 4.tf.variable_scope(指定w的使用范围) 5.tf.get_variable(构造和获得参数) 6.np.load(加载.npy文件)
1. sys.argv[1:] # 在控制台进行参数的输入时,只使用第二个参数以后的数据 参数说明:控制台的输入:python test.py what, 使用sys.argv[1:],那么将获得w ...
- 深度学习原理与框架-CNN在文本分类的应用 1.tf.nn.embedding_lookup(根据索引数据从数据中取出数据) 2.saver.restore(加载sess参数)
1. tf.nn.embedding_lookup(W, X) W的维度为[len(vocabulary_list), 128], X的维度为[?, 8],组合后的维度为[?, 8, 128] 代码说 ...
随机推荐
- bzoj5007: TCP协议
Description 在如今的网络中,TCP是一种被广泛使用的网络协议,它在传输层提供了可靠的通信服务.众所周知,网络是存在 时延的,例如用户先后向服务器发送了两个指令op1和op2,并且希望服务器 ...
- [UE4]世界坐标、本地坐标
本地坐标 世界坐标
- [UE4]限制杀人信息的显示数量
- [UE4]装饰器:Blackboard(装饰器的一种,不是黑板)
装饰器Blackboard可以检查黑板的值是否满足期望的条件: 添加“Blackboard装饰器”:在组合或者任务节点上右键“添加装饰器...”,跟普通装饰器一样. Notify Observer:通 ...
- 在Docker中安装配置Oracle11g并实现数据持久化
1.拉取镜像 docker pull registry.cn-hangzhou.aliyuncs.com/helowin/oracle_11g 镜像详情:https://dev.aliyun.com/ ...
- Redis 实现问题
Redis和数据库的同步如何做? 设置redis中数据的过期时间(登录信息) 更新或修改数据库中数据的时候同时更新redis的 数据 使用MQ更新缓存数据 Redis的好处? 速度快:因为数据在内存中 ...
- Spring MVC controller返回值类型
SpringMVC controller返回值类型: 1 String return "user":将请求转发到user.jsp(forword) return "red ...
- Synchronized常用用法
我们都知道 Synchronized 是线程安全同步用的,大部分程序可能只会用到同步方法上面.其实 Synchronized 可以用到更多的场合,栈长列举了以下几个用法. 1.同步普通方法 这个也是我 ...
- virt-install详解
man virt-install VIRT-INSTALL() Virtual Machine Manager VIRT-INSTALL() NAME virt-install - provision ...
- vs2017配置文件目录
C:\Users\Administrator\AppData\Local\Microsoft\VisualStudio\15.0_6d0a0a42