深度学习原理与框架-Tensorflow基本操作-Tensorflow中的变量
1.tf.Variable([[1, 2]]) # 创建一个变量
参数说明:[[1, 2]] 表示输入的数据,为一行二列的数据
2.tf.global_variables_initializer() 进行变量全局的初始化操作
参数说明:如果代码中存在变量,那么一定需要进行初始化操作
3.tf.matmul(w, x) # 进行数据的点乘操作
参数说明:w,x表示需要进行点乘的矩阵
4.sess = tf.Session() 执行操作的函数
参数说明:通常使用sess.run() 进行参数的执行操作
代码:
第一步:使用tf.Variable()构造两个变量
第二步:使用tf.matmul() 对两个变量进行点乘操作
第三步:使用tf.global_variable_initializer()构造初始化变量init
第四步:构造tf.Session() 等于sess,执行函数
第五步:使用sess.run执行初始化操作,同时执行y,进行点乘操作,打印结果
import tensorflow as tf # 第一步:创建两个变量
w = tf.Variable([[1.0, 0.5]])
x = tf.Variable([[2.0], [2.0]])
# 第二步:使用tf.matmul进行点乘操作
y = tf.matmul(w, x) # 第三步:对于变量必须要进行初始化操作
init = tf.global_variables_initializer()
# 第四步:使用tf.Session()构造执行函数
with tf.Session() as sess:
# 第五步:执行变量初始化和点乘操作,并进行打印
sess.run(init)
print(y.eval())
print(sess.run(y))

代码输出结果
深度学习原理与框架-Tensorflow基本操作-Tensorflow中的变量的更多相关文章
- 深度学习原理与框架-Tensorflow基本操作-mnist数据集的逻辑回归 1.tf.matmul(点乘操作) 2.tf.equal(对应位置是否相等) 3.tf.cast(将布尔类型转换为数值类型) 4.tf.argmax(返回最大值的索引) 5.tf.nn.softmax(计算softmax概率值) 6.tf.train.GradientDescentOptimizer(损失值梯度下降器)
1. tf.matmul(X, w) # 进行点乘操作 参数说明:X,w都表示输入的数据, 2.tf.equal(x, y) # 比较两个数据对应位置的数是否相等,返回值为True,或者False 参 ...
- 深度学习原理与框架-Tensorflow基本操作-实现线性拟合
代码:使用tensorflow进行数据点的线性拟合操作 第一步:使用np.random.normal生成正态分布的数据 第二步:将数据分为X_data 和 y_data 第三步:对参数W和b, 使用t ...
- 深度学习原理与框架-Tensorflow基本操作-变量常用操作 1.tf.random_normal(生成正态分布随机数) 2.tf.random_shuffle(进行洗牌操作) 3. tf.assign(赋值操作) 4.tf.convert_to_tensor(转换为tensor类型) 5.tf.add(相加操作) tf.divide(相乘操作) 6.tf.placeholder(输入数据占位
1. 使用tf.random_normal([2, 3], mean=-1, stddev=4) 创建一个正态分布的随机数 参数说明:[2, 3]表示随机数的维度,mean表示平均值,stddev表示 ...
- 深度学习原理与框架-Tensorflow卷积神经网络-cifar10图片分类(代码) 1.tf.nn.lrn(局部响应归一化操作) 2.random.sample(在列表中随机选值) 3.tf.one_hot(对标签进行one_hot编码)
1.tf.nn.lrn(pool_h1, 4, bias=1.0, alpha=0.001/9.0, beta=0.75) # 局部响应归一化,使用相同位置的前后的filter进行响应归一化操作 参数 ...
- 深度学习原理与框架-Tensorflow卷积神经网络-卷积神经网络mnist分类 1.tf.nn.conv2d(卷积操作) 2.tf.nn.max_pool(最大池化操作) 3.tf.nn.dropout(执行dropout操作) 4.tf.nn.softmax_cross_entropy_with_logits(交叉熵损失) 5.tf.truncated_normal(两个标准差内的正态分布)
1. tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME') # 对数据进行卷积操作 参数说明:x表示输入数据,w表示卷积核, stride ...
- 深度学习原理与框架-Tensorflow卷积神经网络-神经网络mnist分类
使用tensorflow构造神经网络用来进行mnist数据集的分类 相比与上一节讲到的逻辑回归,神经网络比逻辑回归多了隐藏层,同时在每一个线性变化后添加了relu作为激活函数, 神经网络使用的损失值为 ...
- 深度学习原理与框架-图像补全(原理与代码) 1.tf.nn.moments(求平均值和标准差) 2.tf.control_dependencies(先执行内部操作) 3.tf.cond(判别执行前或后函数) 4.tf.nn.atrous_conv2d 5.tf.nn.conv2d_transpose(反卷积) 7.tf.train.get_checkpoint_state(判断sess是否存在
1. tf.nn.moments(x, axes=[0, 1, 2]) # 对前三个维度求平均值和标准差,结果为最后一个维度,即对每个feature_map求平均值和标准差 参数说明:x为输入的fe ...
- 深度学习原理与框架-Alexnet(迁移学习代码) 1.sys.argv[1:](控制台输入的参数获取第二个参数开始) 2.tf.split(对数据进行切分操作) 3.tf.concat(对数据进行合并操作) 4.tf.variable_scope(指定w的使用范围) 5.tf.get_variable(构造和获得参数) 6.np.load(加载.npy文件)
1. sys.argv[1:] # 在控制台进行参数的输入时,只使用第二个参数以后的数据 参数说明:控制台的输入:python test.py what, 使用sys.argv[1:],那么将获得w ...
- 深度学习原理与框架-CNN在文本分类的应用 1.tf.nn.embedding_lookup(根据索引数据从数据中取出数据) 2.saver.restore(加载sess参数)
1. tf.nn.embedding_lookup(W, X) W的维度为[len(vocabulary_list), 128], X的维度为[?, 8],组合后的维度为[?, 8, 128] 代码说 ...
随机推荐
- Javascript之数组遍历
一.遍历数组的几种方式 1.for...in遍历数组,会遍历数组的索引和数组原型上的对象 2.for循环直接遍历 3.迭代器:forEach(遍历数组中所有的值,并忽略回 ...
- 组合(composite)模式
定义 将对象组合成树形结构以表示“部分-整体”的层次结构,使得用户对单个对象和组合对象的使用具有一致性 组合模式(Composite)将小对象组合成树形结构,使用户操作组合对象如同操作一个单个对象.组 ...
- 阿里云kubernetes遭入侵pubg进程占用cpu资源100%解决方法
发现服务器CPU占用100%,通过top命令发现pubg -c config.json -t 2占用CPU资源,kill进程会自动启动.黑客入侵方式是kubernetes创建pod. Name: ku ...
- 廖雪峰Java3异常处理-2断言和日志-1使用断言
1.断言 断言Assertion是一种程序调试方式 使用assert关键字 断言条件预期为true 如果断言失败,抛出AssertionError,停止程序 可选的断言消息,断言失败,就会抛出 pub ...
- OpenStack单节点制作镜像
1.创建快照 已修改后的时刻为记录,进行制作镜像,选择要制作镜像的虚拟机,点击创建快照,在所弹出的对话框中输入所创建的镜像名称 生成了一个镜像,类型为Snapshot 2.保存镜像 查看镜像列表 [r ...
- cordova 常用操作
#创建插件 plugman create --name MyMath --plugin_id SimpleMath --plugin_version #进入插件目录 cd MyMath #plugin ...
- Shiro 权限注解
Shiro 权限注解: Shiro 提供了相应的注解用于权限控制,如果使用这些注解就需要使用AOP 的功能来进行 判断,如Spring AOP:Shiro 提供了Spring AOP 集成用于 ...
- javascript-table出现滚动条表格自动对齐
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- selenuim和phantonJs处理网页动态加载数据的爬取
一.图片懒加载 什么是图片懒加载? 案例分析:抓取站长素材http://sc.chinaz.com/中的图片数据 #!/usr/bin/env python # -*- coding:utf-8 -* ...
- 把一串数字表示成千位分隔形式——JS正则表达式的应用
梳理思路 要先明白的是,我们将要转换成的数字格式是这样:从个位往左数起,每三位前插入一个千位分隔符,,即可以想象成我们要把每三位数字前面的那个空""匹配出来,并替换成千位分隔符,. ...