考虑min-max容斥,改为求位集合内第一次有位变成1的期望时间。求出一次操作选择了S中的任意1的概率P[S],期望时间即为1/P[S]。

  考虑怎么求P[S]。P[S]=∑p[s] (s&S>0)=1-∑p[s] (s&S==0)。做一个高维前缀和即可。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<cstdlib>
#include<algorithm>
using namespace std;
#define N (1<<20)
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
const double eps=1E-;
int n,t,s[N];
double p[N],ans;
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj4036.in","r",stdin);
freopen("bzoj4036.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read();
for (int i=;i<(<<n);i++)
{
scanf("%lf",&p[i]);
if (p[i]>eps) t|=i;
}
if (t!=(<<n)-) {cout<<"INF";return ;}
for (int i=;i<n;i++)
for (int j=;j<(<<n);j++)
if (j&(<<i)) p[j]+=p[j^(<<i)];
for (int i=;i<(<<n);i++)
{
s[i]=s[i^(i&-i)]+;
if (s[i]&) ans+=/(-p[(<<n)-^i]);
else ans-=/(-p[(<<n)-^i]);
}
printf("%.6f",ans);
}

BZOJ4036 HAOI2015按位或(概率期望+容斥原理)的更多相关文章

  1. BZOJ4036 [HAOI2015]按位或 【minmax容斥 + 期望 + FWT】

    题目链接 BZOJ4036 题解 好套路的题啊,,, 我们要求的,实际上是一个集合\(n\)个\(1\)中最晚出现的\(1\)的期望时间 显然\(minmax\)容斥 \[E(max\{S\}) = ...

  2. 【bzoj4036】[HAOI2015]按位或 fmt+期望

    Description 刚开始你有一个数字0,每一秒钟你会随机选择一个[0,2^n-1]的数字,与你手上的数字进行或(c++,c的|,pascal 的or)操作.选择数字i的概率是p[i].保证0&l ...

  3. BZOJ4036 [HAOI2015]按位或 FWT

    原文链接https://www.cnblogs.com/zhouzhendong/p/BZOJ4036.html 题目传送门 - BZOJ4036 题意 刚开始你有一个数字 $0$ ,每一秒钟你会随机 ...

  4. [BZOJ4036] [HAOI2015]按位或

    传送门:https://lydsy.com/JudgeOnline/problem.php?id=4036 Description 刚开始你有一个数字0,每一秒钟你会随机选择一个[0,2^n-1]的数 ...

  5. LOJ2542 PKUWC2018随机游走(概率期望+容斥原理)

    如果直接dp,状态里肯定要带上已走过的点的集合,感觉上不太好做. 考虑一种对期望的minmax容斥:其中Max(S)为遍历完S集合的期望步数,Min(S)为遍历到S集合中一个点的期望步数.当然才不管怎 ...

  6. LOJ2541 PKUWC2018猎人杀(概率期望+容斥原理+生成函数+分治NTT)

    考虑容斥,枚举一个子集S在1号猎人之后死.显然这个概率是w1/(Σwi+w1) (i∈S).于是我们统计出各种子集和的系数即可,造出一堆形如(-xwi+1)的生成函数,分治NTT卷起来就可以了. #i ...

  7. bzoj4036 [HAOI2015]按位或 状压DP + MinMax 容斥

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4036 题解 变成 \(2^n-1\) 的意思显然就是每一个数位都出现了. 那么通过 MinMa ...

  8. 【BZOJ4036】[HAOI2015]按位或 FWT

    [BZOJ4036][HAOI2015]按位或 Description 刚开始你有一个数字0,每一秒钟你会随机选择一个[0,2^n-1]的数字,与你手上的数字进行或(c++,c的|,pascal的or ...

  9. bzoj4036 / P3175 [HAOI2015]按位或

    bzoj4036 / P3175 [HAOI2015]按位或 是一个 min-max容斥 的板子题. min-max容斥 式子: $ \displaystyle max(S) = \sum_{T\su ...

随机推荐

  1. jquery ajax error函数和及其参数详细说明(转载)

    使用jquery的ajax方法向服务器发送请求的时候,常常需要使用到error函数进行错误信息的处理,本文详细的说明了ajax中error函数和函数中各个参数的用法.一般error函数返回的参数有三个 ...

  2. stm32的PWM占空比

    PWM一共有两种模式,PWM1模式:CNT<CRRx为有效电平.CNT>CRRx为无效电平.PWM2模式相反. 有限电平通过设置极性来确定: TIM_OCInitStructure.TIM ...

  3. Scala学习(二)--- 控制结构和函数

    控制结构和函数 摘要: 本篇主要学习在Scala中使用条件表达式.循环和函数,你会看到Scala和其他编程语言之间一个根本性的差异.在Java或C++中,我们把表达式(比如3+4)和语句(比如if语句 ...

  4. WinDbg命令三部曲

    WinDbg 命令三部曲:(一)WinDbg 命令手册 WinDbg 命令三部曲:(二)WinDbg SOS 扩展命令手册 WinDbg 命令三部曲:(三)WinDbg SOSEX 扩展命令手册

  5. MSBUILD : error MSB3428: 未能加载 Visual C++ 组件“VCBuild.exe”

    问题 MSBUILD : error MSB3428: 未能加载 Visual C++ 组件"VCBuild.exe".要解决此问题,1) 安装 .NET Framework 2. ...

  6. PowerBI开发 第二篇:数据建模

    在分析数据时,不可能总是对单个数据表进行分析,有时需要把多个数据表导入到PowerBI中,通过多个表中的数据及其关系来执行一些复杂的数据分析任务,因此,为准确计算分析的结果,需要在数据建模中,创建数据 ...

  7. java拦截器(Interceptor)学习笔记

    1,拦截器的概念    java里的拦截器是动态拦截Action调用的对象,它提供了一种机制可以使开发者在一个Action执行的前后执行一段代码,也可以在一个Action执行前阻止其执行,同时也提供了 ...

  8. 开源微信Http协议Sdk【实现登录/获取好友列表/修改备注/发送消息】

    基于微信Http协议封装的一个Sdk,目前实现了以下功能:. 1:扫码登录(检测二维码扫描状态) 2:获取最近联系人.群组.所有联系人 3:修改好友备注 4:给好友发送消息 暂且这么多,也没多余的时间 ...

  9. Reflux系列01:异步操作经验小结

    写在前面 在实际项目中,应用往往充斥着大量的异步操作,如ajax请求,定时器等.一旦应用涉及异步操作,代码便会变得复杂起来.在flux体系中,让人困惑的往往有几点: 异步操作应该在actions还是s ...

  10. Mysql_临时表

    CREATE TEMPORARY TABLE test_info ( test_name ) NOT NULL, test_totail ,) NOT NULL DEFAULT 0.00, test_ ...