四维偏序。。

就是给你一个四维集合。再给你一些询问,请你求出a[i].x1<=ask.x1&&a[i].x2<=ask.x2&&a[i].x3<=ask.x3&&a[i].x4<=ask.x4的个数。。

集合大小<=30000

询问个数<=30000

然后怎么做呢??

其实很简单只要排序+cdq+树状数组套平衡树什么的就行了

qnmd老子不会。。

这时!

神器来了!

那就是bitset!

众所周知,bitset能存一堆二进制位每一位的状态,而且,bitset和bitset之间是可以进行&操作的

也就是说,我们每次可以对第i位排个序,在判断第i个集合是否满足询问条件,bitset&一下就好了!

放上代码

#include<cmath>
#include<cstdio>
#include<bitset>
#include<algorithm>
#define N 40000
#define eps 1e-8
using namespace std;
int i,j,k,n,m,x,y,t;
struct data{double x1,x2,x3,x4;int id,p;}p[N],q[N],pq[N+N];
bitset<N> ans[N],w;
bool same(double a,double b){return fabs(a-b)<eps;}
bool cmp1(const data&a,const data&b){return same(a.x1,b.x1)?a.p>b.p:a.x1<b.x1-eps;}
bool cmp2(const data&a,const data&b){return same(a.x2,b.x2)?a.p>b.p:a.x2<b.x2-eps;}
bool cmp3(const data&a,const data&b){return same(a.x3,b.x3)?a.p>b.p:a.x3<b.x3-eps;}
bool cmp4(const data&a,const data&b){return same(a.x4,b.x4)?a.p>b.p:a.x4<b.x4-eps;}
int main(){
scanf("%d",&n);
for (i=;i<=n;i++){scanf("%lf%lf%lf%lf",&p[i].x1,&p[i].x2,&p[i].x3,&p[i].x4);p[i].id=i;p[i].p=;}
scanf("%d",&m);
for (i=;i<=m;i++){scanf("%lf%lf%lf%lf",&q[i].x1,&q[i].x2,&q[i].x3,&q[i].x4);q[i].id=i;q[i].p=;}
for (i=;i<=m;i++)ans[i].set();
//-----------------------------------------------------------------
for (i=;i<=n;i++)pq[i]=p[i];
for (i=;i<=m;i++)pq[n+i]=q[i];
sort(pq+,pq++n+m,cmp1);
w.reset();
for (i=;i<=n+m;i++)if (pq[i].p)w[pq[i].id]=;else ans[pq[i].id]&=w;
//-----------------------------------------------------------------
for (i=;i<=n;i++)pq[i]=p[i];
for (i=;i<=m;i++)pq[n+i]=q[i];
sort(pq+,pq++n+m,cmp2);
w.reset();
for (i=;i<=n+m;i++)if (pq[i].p)w[pq[i].id]=;else ans[pq[i].id]&=w;
//-----------------------------------------------------------------
for (i=;i<=n;i++)pq[i]=p[i];
for (i=;i<=m;i++)pq[n+i]=q[i];
sort(pq+,pq++n+m,cmp3);
w.reset();
for (i=;i<=n+m;i++)if (pq[i].p)w[pq[i].id]=;else ans[pq[i].id]&=w;
//-----------------------------------------------------------------
for (i=;i<=n;i++)pq[i]=p[i];
for (i=;i<=m;i++)pq[n+i]=q[i];
sort(pq+,pq++n+m,cmp4);
w.reset();
for (i=;i<=n+m;i++)if (pq[i].p)w[pq[i].id]=;else ans[pq[i].id]&=w;
for (i=;i<=m;i++)printf("%d\n",ans[i].count());
return ;
}

分隔符是为了分开四次排序。。

复杂度是O(n*m/32)....

尽管看上去很慢但是。。

论如何优雅的用bitset来求四维偏序的更多相关文章

  1. 【学习笔记】使用 bitset 求解较高维偏序问题

    求解五维偏序 给定 \(n(\le 3\times 10^4)\) 个五元组,对于每个五元组 \((a_i, b_i, c_i, d_i, e_i)\),求存在多少个 \(1\le j\le n\) ...

  2. Gym - 100342J:Triatrip(Bitset加速求三元环的数量)

    题意:求有向图里面有多少个三元环. 思路:枚举起点A,遍历A可以到的B,然后求C的数量,C的数量位B可以到是地方X集合,和可以到A的地方Y集合的交集(X&Y). B点可以枚举,也可以遍历.(两 ...

  3. Bitset([HZOI 2015]偏序++)

    Bitset简介 下面介绍C++ STL 中一个非常有用的东西: Bitset 类似于二进制状压,它可以把信息转化成一个01串存储起来 定义方法: 首先要#include<bitset>或 ...

  4. HihoCoder - 1513 bitset处理五维偏序

    题意:给出\(n<3e4\)个有序组\((a,b,c,d,e)\),求对第\(i\)个有序组有多少个\(j\)满足\((a_j<a_i,b_j<b_i,c_j<c_i,d_j& ...

  5. SPOJ:Another Longest Increasing Subsequence Problem(CDQ分治求三维偏序)

    Given a sequence of N pairs of integers, find the length of the longest increasing subsequence of it ...

  6. hdu5618(cdq分治求三维偏序)

    题意:给n(n<=100000)个点,坐标为(xi,yi,zi)(1<=xi,yi,zi<=100000),定义一个点A比一个点B小,当且仅当xA<=xB,yA<=yB, ...

  7. [COGS2479]偏序

    [COGS2479]偏序 题目大意: \(n(n\le50000)\)个四元组,求四维偏序. 思路: CDQ分治套CDQ分治套树状数组. 细节: 第二层CDQ之前要备份数组\(a\),否则第二层CDQ ...

  8. 「CodePlus 2017 11 月赛」大吉大利,晚上吃鸡!(dij+bitset)

    从S出发跑dij,从T出发跑dij,顺便最短路计数. 令$F(x)$为$S$到$T$最短路经过$x$的方案数,显然这个是可以用$S$到$x$的方案数乘$T$到$x$的方案数来得到. 然后第一个条件就变 ...

  9. 【动态规划】【滚动数组】【bitset】XVII Open Cup named after E.V. Pankratiev Stage 14, Grand Prix of Tatarstan, Sunday, April 2, 2017 Problem J. Terminal

    有两辆车,容量都为K,有n(10w)个人被划分成m(2k)组,依次上车,每个人上车花一秒.每一组的人都要上同一辆车,一辆车的等待时间是其停留时间*其载的人数,问最小的两辆车的总等待时间. 是f(i,j ...

随机推荐

  1. 2.3《想成为黑客,不知道这些命令行可不行》(Learn Enough Command Line to Be Dangerous)——重命名,复制,删除

    最常用的文件操作除了将文件列出来外,就应该是重命名,复制,删除了.正如将文件列出来一样,大多数现代操作系统为这些任务提供了用户图形界面,但是在许多场景中,用命令行还是会更方便. 使用mv命令重命名一个 ...

  2. Liunx-cp命令

    1. 复制当前目录的test文件夹 到/201904 目录 出现如下截图问题是因为test目录下还有文件,所以得加-r,使用递归拷贝.我现在用这个命令拷贝文件都加-r了,不管有文件还是没文件 2.复制 ...

  3. 20155310《网络对抗》Exp2 后门原理与实践

    20155310<网络对抗>Exp2 后门原理与实践 基础问题回答 1.例举你能想到的一个后门进入到你系统中的可能方式? 在网上下载软件的时候,后门很有可能被捆绑在下载的软件当中: 浏览网 ...

  4. 20155320 Exp6 信息搜集与漏洞扫描

    20155320 Exp6 信息搜集与漏洞扫描 [实验后回答问题] (1)哪些组织负责DNS,IP的管理. 全球根服务器均由美国政府授权的ICANN统一管理,负责全球的域名根服务器.DNS和IP地址管 ...

  5. Luogu P1558 色板游戏

    (此题与POJ2777重题) 为了加深对线段树的记忆,然后开始搞这道题. TM的WA了一下午就是发现x可能大于y(然而题目里说的还很清楚,我TM没看见) 这道题只需要在线段树的板子上改一些地方就可以了 ...

  6. 汇编 XOR运算

     XOR运算  按位异或^ 一.按位异或^ 运算符^ 1^1=0;0^0=0; //相同则为0 0^1=1;1^0=1; //不相同为1 1101^0110=1011; // asm_XOR.c ...

  7. mfc CCombox系统定义成员函数

    通过ID操作对象 CComboBox(组合框)控件 CComboBox类常用成员 CComboBox插入数据 CComboBox删除数据 CComboBox运用示例 一.CComboBox控件常用属性 ...

  8. Elasticsearch Java Rest Client API 整理总结 (二) —— SearchAPI

    目录 引言 Search APIs Search API Search Request 可选参数 使用 SearchSourceBuilder 构建查询条件 指定排序 高亮请求 聚合请求 建议请求 R ...

  9. SSRS配置2:加密管理

    在初始化Reporting Service时,SSRS会自动创建数据库[ReportServer],用于存储报表元数据,报表订阅,以及凭证(Credential)和连接信息等身份验证信息,身份验证数据 ...

  10. Sterling B2B Integrator与SAP交互 - 01 简介

    公司近期实施上线了SAP系统,由于在和客户的数据交互中采用了较多的EDI数据交换,且多数客户所采用的EDI数据并不太相同(CSV,XML,X12,WebService),所以在EDI架构上选择了IBM ...