来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/erect-the-fence

题目描述

在一个二维的花园中,有一些用 (x, y) 坐标表示的树。由于安装费用十分昂贵,你的任务是先用最短的绳子围起所有的树。只有当所有的树都被绳子包围时,花园才能围好栅栏。你需要找到正好位于栅栏边界上的树的坐标。

示例 1:

输入: [[1,1],[2,2],[2,0],[2,4],[3,3],[4,2]]
输出: [[1,1],[2,0],[4,2],[3,3],[2,4]]
解释:

示例 2:

输入: [[1,2],[2,2],[4,2]]
输出: [[1,2],[2,2],[4,2]]
解释:

即使树都在一条直线上,你也需要先用绳子包围它们。

注意:

所有的树应当被围在一起。你不能剪断绳子来包围树或者把树分成一组以上。
输入的整数在 0 到 100 之间。
花园至少有一棵树。
所有树的坐标都是不同的。
输入的点没有顺序。输出顺序也没有要求。

解题思路

第一次遇到这种类型的题,正好借此机会学习了三种凸包算法:

Jarvis算法:Jarvis算法的原理十分的简单,首先,对于一堆点,找到边缘处的点。

如图,我找到了最左侧的点A,这个点在边缘,所以一定会在栅栏上面,然后随笔选取一点B做向量AB

接下来,遍历每一个点,找到向量AB最右侧的点C(关于如何找最右侧,可以使用向量叉乘,如果叉乘和小于0,那么说明AC是AB顺时针旋转得到的,所以点C肯定会在向量AB的右侧,将C点当做B点继续遍历其他的点,就可以找到向量AB最右侧的点C了,注意,利用向量叉乘会出现0的情况,细节如何处理下文会介绍)

点AC就可以确定是外轮廓线,也就是栅栏的位置,接下来使用C作为起点重命名为A继续上述的步骤,直到C回到起始点A为止,外轮廓也就是栅栏就确定下来了。

在这个过程中会有一些特殊的情况,入下图

如果起始点从A遍历到B的时候,下一个点如果选中的是A,那么利用叉乘求最右侧点时候,如果先遍历的是C,那么就会出现叉乘为0而漏掉C的情况,在某些情况还会出现死循环,所以第一个选择的点需要一些技巧,这里每次指定这个点是数组中循环的下一个点而不是每次从数组第一个点开始遍历。

但是当起点是A点时候,如果第一个点选中的是C, 由于AB和AC叉乘为0,所以B点会被漏选,所以在每次选中最右点后,要判断是否有点与起点和最右点共线,将这些点也应该加入篱笆。

此算法对于每个点都要遍历一次其余各点,所以时间复杂度为O(n2)。

代码展示

Jarvis算法:

class Solution {
public:
vector<vector<int>> outerTrees(vector<vector<int>>& trees) {
if(trees.size() < 4) return trees;
vector<vector<int>> vviRet;
unordered_set<int> setiVistied;
int iStart = 0, iCur = 0;
/* find leftest tree*/
for(int i = 0; i < trees.size(); i++)
{
if (trees[i][0] < trees[iStart][0])
{
iStart = i;
}
}
iCur = iStart;
do
{
int iNext = (iCur + 1) % trees.size();
int iDirX = trees[iNext][0] - trees[iCur][0];
int iDirY = trees[iNext][1] - trees[iCur][1];
for(int i = 0; i < trees.size(); i++)
{
int iTempX = trees[i][0] - trees[iCur][0];
int iTempY = trees[i][1] - trees[iCur][1];
if(iDirX * iTempY - iDirY * iTempX < 0)
{
iDirX = iTempX;
iDirY = iTempY;
iNext = i;
}
}
for(int i = 0; i < trees.size(); i++)
{
int iTempX = trees[i][0] - trees[iCur][0];
int iTempY = trees[i][1] - trees[iCur][1];
if(iDirX * iTempY - iDirY * iTempX == 0 && setiVistied.find(i) == setiVistied.end())
{
setiVistied.emplace(i);
vviRet.emplace_back(vector<int>{trees[i][0], trees[i][1]});
}
}
iCur = iNext;
}
while(iCur != iStart);
return vviRet;
}
};

运行结果

LeetCode-587 安装栅栏及三种凸包算法的学习的更多相关文章

  1. Java实现 LeetCode 587 安装栅栏(图算法转换成数学问题)

    587. 安装栅栏 在一个二维的花园中,有一些用 (x, y) 坐标表示的树.由于安装费用十分昂贵,你的任务是先用最短的绳子围起所有的树.只有当所有的树都被绳子包围时,花园才能围好栅栏.你需要找到正好 ...

  2. Leetcode 587.安装栅栏

    安装栅栏 在一个二维的花园中,有一些用 (x, y) 坐标表示的树.由于安装费用十分昂贵,你的任务是先用最短的绳子围起所有的树.只有当所有的树都被绳子包围时,花园才能围好栅栏.你需要找到正好位于栅栏边 ...

  3. 7.1 安装软件包的三种方法 7.2 rpm包介绍 7.3 rpm工具用法 7.4 yum工具用法 7.5 yum搭建本地仓库

    7.1 安装软件包的三种方法 7.2 rpm包介绍 7.3 rpm工具用法 7.4 yum工具用法 7.5 yum搭建本地仓库 三种方法 rpm工具----->类型windows下的exe程序 ...

  4. 安装软件包的三种方法、RPM包介绍、rpm、yum工具用法、yum搭建本地仓库

    第5周第3次课(4月18日) 课程内容: 7.1 安装软件包的三种方法7.2 rpm包介绍7.3 rpm工具用法7.4 yum工具用法7.5 yum搭建本地仓库 7.1 安装软件包的三种方法 rpm工 ...

  5. Linux CentOS7 VMware 安装软件包的三种方法、rpm包介绍、rpm工具用法、yum工具用法、yum搭建本地仓库

    一.安装软件包的三种方法 Linux下游三种安装方法,rpm工具.yum工具.源码包.rpm按装一个程序包时,有可能因为该程序包依赖另一个程序包而无法安装:yum工具,可以连同依赖的程序包一起安装. ...

  6. FIFO、LRU、OPT这三种置换算法的缺页次数

    考虑下述页面走向: 1,2,3,4,2,1,5,6,2,1,2,3,7,6,3,2,1,2,3,6 当内存块数量分别为3时,试问FIFO.LRU.OPT这三种置换算法的缺页次数各是多少? 答:缺页定义 ...

  7. 排序—时间复杂度为O(n2)的三种排序算法

    1 如何评价.分析一个排序算法? 很多语言.数据库都已经封装了关于排序算法的实现代码.所以我们学习排序算法目的更多的不是为了去实现这些代码,而是灵活的应用这些算法和解决更为复杂的问题,所以更重要的是学 ...

  8. 基于C#程序设计语言的三种组合算法

    目录 基于C#程序设计语言的三种组合算法 1. 总体思路 1.1 前言 1.2 算法思路 1.3 算法需要注意的点 2. 三种组合算法 2.1 普通组合算法 2.2 与自身进行组合的组合算法 2.3 ...

  9. 网络中,FIFO、LRU、OPT这三种置换算法的缺页次数

    FIFO.LRU.OPT这三种置换算法的缺页次数 转载  由于要考计算机四级网络,这里遇到了问题,就搜了一些资料来解疑. 考虑下述页面走向: 1,2,3,4,2,1,5,6,2,1,2,3,7,6,3 ...

  10. 三种Hash算法对比以及秒传原理.

    三种Hash算法对比以及秒传原理 CRC (32/64)   MD5  Sha1 分5个点来说 1.校验值长度 2.校验值类别 3.安全级别 4.应用场景 1).校验值长度 CRC(32/64) 分别 ...

随机推荐

  1. Ubuntu 22.04 搭建K8s集群

    目录 1. 虚拟机基础配置 配置静态ip 设置主机名 设置hosts 安装ssh 2. Ubuntu系统设置 禁用swap 修改内核参数 3. 安装containerd 4. 安装Kubernetes ...

  2. 异常处理语法结构、yield生成器及其表达式

    今日内容回顾 目录 今日内容回顾 异常处理语法结构 异常处理实战应用 生成器对象 自定义range功能 yield冷门用法 yield与return对比 生成器表达式 笔试题 异常处理语法结构 异常处 ...

  3. JavaScript 深拷贝的循环引用问题

    如果说道实现深拷贝最简单的方法,我们第一个想到的就是 JSON.stringify() 方法,因为JSON.stringify()后返回的是字符串,所以我们会再使用JSON.parse()转换为对象, ...

  4. day12-功能实现11

    家居网购项目实现011 以下皆为部分代码,详见 https://github.com/liyuelian/furniture_mall.git 27.功能25-事务管理 27.1下订单问题思考 在生成 ...

  5. [OpenCV实战]16 使用OpenCV实现多目标跟踪

    目录 1 背景介绍 2 基于MultiTracker的多目标跟踪 2.1 创建单个对象跟踪器 2.2 读取视频的第一帧 2.3 在第一帧中确定我们跟踪的对象 2.4 初始化MultiTrackerer ...

  6. Kaliの一些网络操作

    KAlIの一些网络操作 arping -c 192.168.10.1 缺点是只能对单一ip进行探测,可利用shell脚本进行网段探测扫描 netdiscover -i eth0 -r 192.168. ...

  7. ionic+vue+capacitor系列笔记--01项目初始化

    Ionic 是什么? Ionic 是一款接近原生的 Html5 移动 App 开发框架,只需要你会 HTML.CSS 和 JavaScript 就可以开发移动 App应用,使用最基础的 Web 技术创 ...

  8. RealWorld CTF 5th ShellFind 分析

    前言 RealWorld CTF 5th 里的一道iot-pwn,根据真实设备固件改编而成,觉得题目贴近iot实战且很有意思,故在此记录一下复现过程. 题目分析 题目描述 Hello Hacker. ...

  9. 方法引用_通过类名引用静态成员方法-方法引用_通过super引用父类的成员方法

    方法引用_通过类名引用静态成员方法 由于在java.lang .Nath类中已经存在了静态方法 abs,所以当我们需要通过Lambda来调用该方法时,有两种写法.首先是函数式接口∶ 第一种写法是使用L ...

  10. 增加for循环-泛型的概念

    增加for循环 增强for循环(也称for each循环)是JDK1.5以后出来的一个高级for循环,专门用来遍历数组和集合的.它的内部原理其实是个lterator迭代器,所以在遍历的过程中,不能对集 ...