又名NTR的故事

【题目大意】

n对夫妻Bi和Gi。若某男Bi与某女Gj曾经交往过,他们有私奔的可能性。不妨设Bi和Gj旧情复燃,进而Bj会联系上了他的初恋情人Gk,以此递推。若在Bi和Gi离婚的前提下,这2n个人最终依然能够结合成n对情侣,那么我们称婚姻i为不安全的,否则婚姻i就是安全的。问n对夫妻的婚姻分别是安全的吗?

【思路】

第一反应是匈牙利算法,但是太过于暴力了,过不了。

我们把夫妻中女方连向男方,旧情中男方连向女方。可以得出结论:如果该有向图的强连通分量中,夫妻双方在同一个强连通分量里,那么他们的婚姻是不安全的,否则他们的婚姻是安全的。

为什么呢?如果在同一个强连通分量中,显然可以连出一个增广路,相当于匈牙利算法可以跑,那么必定是能形成新的n对情侣的。

如果不在一个强连通分量中,可以理解为匈牙利算法不能调整了(具体原因见匈牙利算法),那么必定不能形成新的n对情侣。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<map>
#include<vector>
#include<stack>
using namespace std;
map<string,int> Name;
const int MAXN=+;
int n,m;
int cnt,col,dfn[MAXN*],low[MAXN*],instack[MAXN*],tar[MAXN*];
vector<int> E[MAXN*];
stack<int> S; void addedge(int u,int v){E[u].push_back(v);} void tarjan(int u)
{
low[u]=dfn[u]=++cnt;
S.push(u);
instack[u]=;//不要忘记了这两句
for (int i=;i<E[u].size();i++)
{
int v=E[u][i];
if (!instack[v])
{
tarjan(v);
low[u]=min(low[u],low[v]);
}
else if (instack[v]==) low[u]=min(low[u],dfn[v]);
} if (low[u]==dfn[u])
{
++col;
while (S.top()!=u)
{
tar[S.top()]=col,instack[S.top()]=;
S.pop();
}
tar[u]=col,instack[u]=;
S.pop();
}
} void init()
{
scanf("%d",&n);
for (int i=;i<=n;i++)
{
char wife[],husband[];
scanf("%s%s",wife,husband);
Name[wife]=i;
Name[husband]=i+n;
addedge(i,i+n);
}
scanf("%d",&m);
for (int i=;i<=m;i++)
{
char Exgf[],Exbf[];
scanf("%s%s",Exgf,Exbf);
int exgf=Name[Exgf],exbf=Name[Exbf];
addedge(exbf,exgf);
}
} void solve()
{
cnt=col=;
while (!S.empty()) S.pop();
memset(instack,,sizeof(instack));
for (int j=;j<=*n;j++) if (!instack[j]) tarjan(j);
for (int i=;i<=n;i++)
if (tar[i]==tar[i+n]) puts("Unsafe");
else puts("Safe");
} int main()
{
init();
solve();
return ;
}

【tarjan】BZOJ2140-稳定婚姻的更多相关文章

  1. BZOJ2140: 稳定婚姻(tarjan解决稳定婚姻问题)

    2140: 稳定婚姻 Time Limit: 2 Sec  Memory Limit: 259 MBSubmit: 1321  Solved: 652[Submit][Status][Discuss] ...

  2. BZOJ2140: 稳定婚姻

    题解: 题意就是求二分图的必须边. 我们有结论: 在残量网络上跑tarjan,对于一条边(u,v) 如果该边满流||scc[u]==scc[v],那么该边是可行边. 因为如果scc[u]==scc[v ...

  3. BZOJ2140 稳定婚姻[强连通分量]

    发现如果$B_i$和$G_j$配对,那么$B_j$又要找一个$G_k$配对,$B_k$又要找一个$G_l$配对,一直到某一个$B_x$和$G_i$配对上为止,才是不稳定的. 暴力是二分图匹配.匈牙利算 ...

  4. 【BZOJ2140】稳定婚姻 Tarjan

    [BZOJ2140]稳定婚姻 Description 我国的离婚率连续7年上升,今年的头两季,平均每天有近5000对夫妇离婚,大城市的离婚率上升最快,有研究婚姻问题的专家认为,是与简化离婚手续有关. ...

  5. 【bzoj2140】: 稳定婚姻 图论-tarjan

    [bzoj2140]: 稳定婚姻 哎..都是模板题.. 一眼看过去 哇 二分图哎 然后发现好像并不能匈牙利算法 自己xjb画两张图,发现二分图左向右连配偶的边,然后右向左连交往过的边 然后如果Bi G ...

  6. luogu P1407 稳定婚姻-tarjan

    题目背景 原<工资>重题请做2397 题目描述 我国的离婚率连续7年上升,今年的头两季,平均每天有近5000对夫妇离婚,大城市的离婚率上升最快,有研究婚姻问题的专家认为,是与简化离婚手续有 ...

  7. 洛谷 P1407 [国家集训队]稳定婚姻 解题报告

    P1407 [国家集训队]稳定婚姻 题目描述 我国的离婚率连续7年上升,今年的头两季,平均每天有近5000对夫妇离婚,大城市的离婚率上升最快,有研究婚姻问题的专家认为,是与简化离婚手续有关. 25岁的 ...

  8. BZOJ 2140 稳定婚姻

    2140: 稳定婚姻 Description 我国的离婚率连续7年上升,今年的头两季,平均每天有近5000对夫妇离婚,大城市的离婚率上升最快,有研究婚姻问题的专家认为,是与简化离婚手续有关. 25岁的 ...

  9. BZOJ_2140_稳定婚姻_强连通分量

    BZOJ_2140_稳定婚姻_强连通分量 Description 我国的离婚率连续7年上升,今年的头两季,平均每天有近5000对夫妇离婚,大城市的离婚率上升最快,有研究婚 姻问题的专家认为,是与简化离 ...

  10. 图论补档——KM算法+稳定婚姻问题

    突然发现考前复习图论的时候直接把 KM 和 稳定婚姻 给跳了--emmm 结果现在刷训练指南就疯狂补档.QAQ. KM算法--二分图最大带权匹配 提出问题 (不严谨定义,理解即可) 二分图 定义:将点 ...

随机推荐

  1. windows下启动mysql服务的命令行启动和手动启动方法

    1.图形界面下启动mysql服务. 在图形界面下启动mysql服务的步骤如下: (1)打开控制面板->管理工具->服务,如下图所示: 可以看到Mysql服务目前的状态是未启动(未写已启动的 ...

  2. 2017ACM暑期多校联合训练 - Team 2 1008 HDU 6052 To my boyfriend (数学 模拟)

    题目链接 Problem Description Dear Liao I never forget the moment I met with you. You carefully asked me: ...

  3. 关于[神州数码信息安全DCN杯/信息安全管理与评估]的一些经验之谈

    前阵子参加了神州数码的比赛,赛后有如下经验分享,给还没参加过的朋友分享一下心德以及要注意的坑. 先科普一下这个比赛的三个阶段: 第一阶段主要是考网络部分的,例如搭建wifi以及防火墙诸如此类的设备. ...

  4. MongoDB之数据库命令操作(二)

    现在详细学习一下mongodb的数据库操作. 查询语句 db.xxx(集合name).find() # 查询 db.xxx(集合name).findOne() # 只返回一个 db.xxx(集合nam ...

  5. FPGA与CPLD的概念及其区别

    一.FPGA与CPLD的基本概念 1.CPLD CPLD主要是由可编程逻辑宏单元(LMC,Logic Macro Cell)围绕中心的可编程互连矩阵单元组成,其中LMC逻辑结构较复杂,并具有复杂的I/ ...

  6. 解读Linux命令格式(转)

    解读Linux命令格式   环境 Linux HA5-139JK 2.6.18-164.el5 #1 SMP Tue Aug 18 15:51:48 EDT 2009 x86_64 x86_64 x8 ...

  7. javascript反混淆之packed混淆(二)

    上次我们简单的入门下怎么使用html破解packed的混淆,下面看一个综合案例. 上次内容javascript反混淆之packed混淆(一) function getKey() { var aaaaf ...

  8. vundle+vim8+php+xdebug

    vundle 一开始容易被坑,vundle的运行方法是自己下载,不是自己下载,在安装上vundle后,直接修改~/.vimrc中,Plugin增加插件,然后运行PluginInstall即可安装 vi ...

  9. java中常见异常汇总(根据自己遇到的异常不定时更新)

    1.java.lang.ArrayIndexOutOfBoundsException:N(数组索引越界异常.如果访问数组元素时指定的索引值小于0,或者大于等于数组的长度,编译程序不会出现任何错误,但运 ...

  10. mini_httpd在RedHat 5下安装

    1.安装mini_httpdcd /usr/src/redhat/SOURCES wget http://www.acme.com/software/mini_httpd/mini_httpd-1.1 ...