本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作。

本文作者:ljh2000
作者博客:http://www.cnblogs.com/ljh2000-jump/
转载请注明出处,侵权必究,保留最终解释权!

题目链接:P3601

正解:线性筛+欧拉函数

解题报告:

  我一看到这道题的第一反应居然是杜教筛,真是没救了…

  显然答案就是每个数自己-他的欧拉函数,这个东西的和。

  考虑区间范围不大,那么我们没必要把$[1,r]$整个区间的欧拉函数做出来。

  因为大于$\sqrt{r}$的的质因子最多一个,那么我就可以把$10^6$范围内的质数筛出来,然后对$[l,r]$根据欧拉函数定义暴力算函数值。

  最后再单独考虑$>$ $\sqrt{r}$的那个质因子的贡献。

  这个复杂度就是$O(\sqrt{r}log(r-l))$。

  

//It is made by ljh2000
//有志者,事竟成,破釜沉舟,百二秦关终属楚;苦心人,天不负,卧薪尝胆,三千越甲可吞吴。
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <ctime>
#include <vector>
#include <queue>
#include <map>
#include <set>
#include <string>
#include <complex>
#include <bitset>
using namespace std;
typedef long long LL;
typedef long double LB;
typedef complex<double> C;
const double pi = acos(-1);
const int MAXN = 1000011;
const int mod = 666623333;
int m,prime[MAXN],cnt;
bool vis[MAXN];
LL l,r,lb,rb,len,a[MAXN],R[MAXN],ans; inline LL getint(){
LL w=0,q=0; char c=getchar(); while((c<'0'||c>'9') && c!='-') c=getchar();
if(c=='-') q=1,c=getchar(); while (c>='0'&&c<='9') w=w*10+c-'0',c=getchar(); return q?-w:w;
} inline void init(){
m=1000000; for(int i=1;i<=len;i++) a[i]=R[i]=l+i-1;
for(int i=2;i<=m;i++) {
if(!vis[i]) { prime[++cnt]=i; }
for(int j=1;j<=cnt && i*prime[j]<=m;j++) {
vis[i*prime[j]]=1;
if(i%prime[j]==0) break;
}
}
} inline void work(){
l=getint(); r=getint(); len=r-l+1; init();
LL now,pos;
for(int i=1;i<=cnt;i++) {
lb=l/prime[i]; rb=r/prime[i];
if((LL)prime[i]*lb<l) lb++;
for(LL j=lb;j<=rb;j++) {
now=(LL)prime[i]*j; pos=now-l+1;
a[pos]/=prime[i]; a[pos]*=prime[i]-1;
while(R[pos]%prime[i]==0) R[pos]/=prime[i];
}
}
for(int i=1;i<=len;i++) if(R[i]!=1) a[i]/=R[i],a[i]*=R[i]-1;
for(int i=1;i<=len;i++) ans+=l+i-1-a[i],ans%=mod;
printf("%lld",ans);
} int main()
{
work();
return 0;
}
//有志者,事竟成,破釜沉舟,百二秦关终属楚;苦心人,天不负,卧薪尝胆,三千越甲可吞吴。

  

洛谷P3601 签到题的更多相关文章

  1. A 洛谷 P3601 签到题 [欧拉函数 质因子分解]

    题目背景 这是一道签到题! 建议做题之前仔细阅读数据范围! 题目描述 我们定义一个函数:qiandao(x)为小于等于x的数中与x不互质的数的个数. 这题作为签到题,给出l和r,要求求. 输入输出格式 ...

  2. 洛谷P3601签到题(欧拉函数)

    题目背景 这是一道签到题! 建议做题之前仔细阅读数据范围! 题目描述 我们定义一个函数:qiandao(x)为小于等于x的数中与x不互质的数的个数. 这题作为签到题,给出l和r,要求求. 输入输出格式 ...

  3. 洛谷 P3601 签到题

    https://www.luogu.org/problemnew/show/P3601 一道关于欧拉函数的题. 读完题目以后我们知道所谓的$aindao(x)=x- \phi (x) $. 对于x小的 ...

  4. 洛谷3794 签到题IV

    题目描述 给定一个长度为n的序列$a_1,a_2...a_n$,其中每个数都是正整数. 你需要找出有多少对(i,j),$1 \leq i \leq j \leq n$且$gcd(a_i,a_{i+1} ...

  5. 洛谷P3764 签到题 III

    题目背景 pj组选手zzq近日学会了求最大公约数的辗转相除法. 题目描述 类比辗转相除法,zzq定义了一个奇怪的函数: typedef long long ll; ll f(ll a,ll b) { ...

  6. 【noip】跟着洛谷刷noip题2

    noip好难呀. 上一个感觉有点长了,重开一个. 36.Vigenère 密码 粘个Openjudge上的代码 #include<cstdio> #include<iostream& ...

  7. [洛谷P1707] 刷题比赛

    洛谷题目连接:刷题比赛 题目背景 nodgd是一个喜欢写程序的同学,前不久洛谷OJ横空出世,nodgd同学当然第一时间来到洛谷OJ刷题.于是发生了一系列有趣的事情,他就打算用这些事情来出题恶心大家-- ...

  8. 洛谷P5274 优化题(ccj)

    洛谷P5274 优化题(ccj) 题目背景 CCJCCJ 在前往参加 Universe \ OIUniverse OI 的途中... 题目描述 有一个神犇 CCJCCJ,他在前往参加 Universe ...

  9. 洛谷 P4148 简单题 KD-Tree 模板题

    Code: //洛谷 P4148 简单题 KD-Tree 模板题 #include <cstdio> #include <algorithm> #include <cst ...

随机推荐

  1. 【opencv入门篇】 10个程序快速上手opencv【下】

    导言:本系列博客目的在于能够在vs快速上手opencv,理论知识涉及较少,大家有兴趣可以查阅其他博客深入了解相关的理论知识,本博客后续也会对图像方向的理论进一步分析,敬请期待:) 上篇传送:http: ...

  2. 【opencv入门篇】 10个程序快速上手opencv【上】

    导言:本系列博客目的在于能够在vs快速上手opencv,理论知识涉及较少,大家有兴趣可以查阅其他博客深入了解相关的理论知识,本博客后续也会对图像方向的理论进一步分析,敬请期待:) PS:官方文档永远是 ...

  3. Linux内核调试技术——jprobe使用与实现

    前一篇博文介绍了kprobes的原理与kprobe的使用与实现方式,本文介绍kprobes中的另外一种探測技术jprobe.它基于kprobe实现,不能在函数的任何位置插入探測点,仅仅能在函数的入口处 ...

  4. jQuery -&gt; 使用andSelf()来包括之前的选择集

    版权声明:本文为博主原创文章.转载请注明出处 https://blog.csdn.net/FeeLang/article/details/26254793 当我们使用Destructive Metho ...

  5. 006-Shell printf 命令

    一.概述 printf 命令模仿 C 程序库(library)里的 printf() 程序. printf 由 POSIX 标准所定义,因此使用 printf 的脚本比使用 echo 移植性好. pr ...

  6. matlab实现MSER(最大极值稳定区域)来进行文本定位

    一.自然场景文本定位综述   场景图像中文本占据的范围一般都较小,图像中存在着大范围的非文本区域.因此,场景图像文本定位作为一个独立步骤越来越受到重视.这包括从最先的CD和杂志封面文本定位到智能交通系 ...

  7. debian flam3 依赖文件

    https://packages.debian.org/stable/graphics/flam3     package names   descriptions   source package ...

  8. 关于ajax中responseText不能返回脚本的问题。

    今天做后台时想用ajax返回带有脚本的HTML DOM ,发现脚本被当成字符串了,查了一下responseText()方法返回的是字符串,查了一下百度,用了正则匹配,匹配到脚本然后执行,不想当一个伸手 ...

  9. cocosBuider 控件命名的坑

    这几天遇到了各种坑.... 各种控件名字问题.... bool CLevelLayer::onAssignCCBMemberVariable(cocos2d::CCObject * pTarget, ...

  10. UI自动化测试框架之Selenium关键字驱动 (转)

    摘要 自动化测试框架demo,用关键字的形式将测试逻辑封装在数据文件中,测试工具解释这些关键字即可对其应用自动化 一.原理及特点 1.   关键字驱动测试是数据驱动测试的一种改进类型 2.    主要 ...