简单的叙述就不必了。

  对于一个图,我们要找最大流,对于基于增广路径的算法,首先必须要建立反向边。

  反向边的正确性:

    我努力查找了许多资料,都没有找到理论上关于反向边正确性的证明。

    但事实上,我们不难理解,对于每条反向边,我们流过它相当于撤销了一条正向边的流量。

    并且它是必须的:

    

    而且从理论上,我们在加入反向边之后得到的最大流,我们从残余网络考虑。

    我们要认识到,反向边不会使最大流流量减少,这是很显然的。有flow<=flow'。

    接下来我们考虑所有点的流量是否可以只用正向边得到。

    并且我们考察汇点,由于汇点没有出边,所有的反向边都是从它离开的,那么显然不会对汇点造成影响。

    对于其他点,我们考虑一条反向边的容量取决于正向边的流量,及总有flow_positive=capacity_negative,

    或者换一个说法,flow_positive=-flow_negative。

    也就是说,如果从这个点出去的流是通过u->v这条反向边出去的,这个流流向k,那么必然有相同流量的流从v->u,

    那么不如直接从v->k好了。(如果这个u->v->k包含其他反向边,那么就递归下去讨论,但问题规模减少。)

    这样就意识流的证明完了。

  最大流最小割定理:

    有一种普遍的证法,首先任意可行流的流量不可能大于任意一种割。即有最小割>=任意可行流。

    并且由于最大流算法,最大流的得出来的残余网络源点、汇点必然不连通,否则最大流可以更大(沿着联通的路径流过去可以更大)。

    这个时候最大流算法得到了其中一个割。

    即有最大流>=最小割。

    所以有最大流=最小割。

  要找到最大流,我们有一个非常直观的想法,不断的在残余网络中找S-T的路径,如果找到就流过去,流量自然而然的+1,这些便流量减少。

  这就是简易的Fold-Fulkerson算法,它是正确的。

  Fold-Fulkerson FF算法正确性证明:

    首先FF算法能够得到一个割,上面我们证明了割的容量总大于任意的流量,那么FF得到的流显然就是最大流了。

  在FF算法上,根据最短路的性质,可以证明每次根据残余网络的最短路径的可行路径流过去可以达到O(V^2E)的算法复杂度

——EK算法

  EK算法可以说是第一个SAP(Shortest Augment Path 最短增广路径)算法,在这之后的dinic只是一种扩展。

  事实上,在学习了之后,可以发现dinic和ISAP实际上十分相似。

  理论上ISAP是加了更多优化的。

  在利用预标号的技术后,ISAP应该是不会劣于Dinic的。但事实上poi的kos和NOI的海拔都使ISAP跪掉了(听说?)

  不过我觉得很有可能是写搓了。

  特别要注意,在分层图上,预标号是必需的。

  比如bzoj1001的狼抓兔子(本人ISAP跑了1200ms)中,如果不加预标号,一定是跑不过的。

  但加了之后,比dinic快2/3,并且比一些转了最短路的算法都要快一点。

Reference:

  1. https://tadvent.wordpress.com/2009/04/07/usaco-4-2-1-ditch-%E7%BD%91%E7%BB%9C%E6%9C%80%E5%A4%A7%E6%B5%81%E9%97%AE%E9%A2%98%E7%AE%97%E6%B3%95%E5%B0%8F%E7%BB%93/
  2. http://www.cs.yale.edu/homes/aspnes/pinewiki/MaxFlow.html
  3. https://en.wikipedia.org/wiki/Maximum_flow_problem
  4. http://blog.csdn.net/qq_21110267/article/details/43540483

最大流-最小割 MAXFLOW-MINCUT ISAP的更多相关文章

  1. ISAP 最大流 最小割 模板

    虽然这道题用最小割没有做出来,但是这个板子还是很棒: #include<stdio.h> #include<math.h> #include<string.h> # ...

  2. UVa11248 Frequency Hopping(最大流+最小割)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=33206 [思路] 最大流最小割. 可以确定的是如果不可行需要修改的 ...

  3. matlab练习程序(最大流/最小割)

    学习这个算法是为学习图像处理中的图割算法做准备的. 基本概念: 1.最大流是一个有向图. 2.一个流是最大流,当且仅当它的残余网络中不包括增广路径. 3.最小割就是网络中所有割中值最小的那个割,最小割 ...

  4. 最大流&最小割 - 专题练习

    [例1][hdu5889] - 算法结合(BFS+Dinic) 题意 \(N\)个点\(M\)条路径,每条路径长度为\(1\),敌人从\(M\)节点点要进攻\(1\)节点,敌人总是选择最优路径即最短路 ...

  5. 「网络流24题」「LuoguP2774」方格取数问题(最大流 最小割

    Description 在一个有 m*n 个方格的棋盘中,每个方格中有一个正整数.现要从方格中取数,使任意 2 个数所在方格没有公共边,且取出的数的总和最大.试设计一个满足要求的取数算法.对于给定的方 ...

  6. HDU6582 Path【优先队列优化最短路 + dinic最大流 == 最小割】

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6582 来源:2019 Multi-University Training Contest 1 题目大意 ...

  7. 最大流/最小割模板(isap) POJ1273

    isap模板核心代码: //d[]为距离标号数组,d[i]表示节点i到汇点的距离 //gap[]为GAP优化数组,gap[i]表示到汇点距离为i的节点个数 int dfs(int k,int flow ...

  8. 最大流&最小割&费用流模版

    好久都没有搞博客了.想认真写又要准备文化课期末了. ISAP 流程: 原理就是dfs找增广路. 最基础的建反向边以便反悔就不说了. 但是记录一个dep(dis)表示层数,一开始BFS(从t开始,dis ...

  9. 网络流 最大流—最小割 之SAP算法 详解

    首先引入几个新名词: 1.距离标号: 所谓距离标号 ,就是某个点到汇点的最少的弧的数量(即边权值为1时某个点到汇点的最短路径长度). 设点i的标号为level[i],那么如果将满足level[i]=l ...

随机推荐

  1. windows安装rabbitmq

    官网下载windows安装版本:http://www.rabbitmq.com/install-windows.html ,安装文件rabbitmq-server-3.6.5.exe 前提:安装erl ...

  2. pdfbox加载pdf时遇到wrappedioexception报错处理方式

    现在一个项目要对pdf做处理.由于其中一个pdf约为80M左右,用pdfbox读取pdf时遇到了wrappedioexception错误.监控得到说内存不足.于是请教项目经理.他告诉我在Open De ...

  3. C#高级编程笔记2016年10月12日 运算符重载

    1.运算符重载:运算符重重载的关键是在对象上不能总是只调用方法或属性,有时还需要做一些其他工作,例如,对数值进行相加.相乘或逻辑操作等.例如,语句if(a==b).对于类,这个语句在默认状态下会比较引 ...

  4. word20161217

    p-node / p 节点 package / 程序包 packet / 数据包 packet assembler/disassembler, PAD / 分组拆装器 packet header / ...

  5. overridePendingTransition简介

    1 Activity的切换动画指的是从一个activity跳转到另外一个activity时的动画. 它包括两个部分:一部分是第一个activity退出时的动画:另外一部分时第二个activity进入时 ...

  6. JS学习-创建对象

    1.标准创建对象模式 var person = new Object(); person.name = "Nicholas"; person.age = 29; person.jo ...

  7. 在CentOS 7 中 安装 VSFTP

    在线安装:yum install -y vsftpd 使用yum 进行卸载:yum -y remove vsftpd 编辑配置:vi /etc/vsftpd/vsftpd.conf 查看FTP进程是否 ...

  8. 修改jetty的默认端口号

    jetty默认端口是8080,修改端口号也很简单,首先进入到jetty服务器安装目录下会看到start.ini配置文件,这里就是jetty启动时加载的配置,其中包括要加载的模块,超时时间配置还有这里的 ...

  9. 开刷LeetCode

    还是觉得自己在算法这块太弱鸡了 不多废话开刷吧,LeetCode与算法导论相辅相成双管齐下,期望能填上算法这个坑 解法没意外都是用Python2.7 由于LeetCode有提供Top Solution ...

  10. h5手机页面禁止缩放

    <meta name="viewport" content="width=device-width, initial-scale=1, user-scalable= ...