Background 

Hugo Heavy is happy. After the breakdown of the Cargolifter project he can now expand business. But he needs a clever man who tells him whether there really is a way from the place his customer has build his giant steel crane to the place where it is needed
on which all streets can carry the weight. 

Fortunately he already has a plan of the city with all streets and bridges and all the allowed weights.Unfortunately he has no idea how to find the the maximum weight capacity in order to tell his customer how heavy the crane may become. But you surely know. 

Problem 

You are given the plan of the city, described by the streets (with weight limits) between the crossings, which are numbered from 1 to n. Your task is to find the maximum weight that can be transported from crossing 1 (Hugo's place) to crossing n (the customer's
place). You may assume that there is at least one path. All streets can be travelled in both directions.

Input

The first line contains the number of scenarios (city plans). For each city the number n of street crossings (1 <= n <= 1000) and number m of streets are given on the first line. The following m lines contain triples of integers
specifying start and end crossing of the street and the maximum allowed weight, which is positive and not larger than 1000000. There will be at most one street between each pair of crossings.

Output

The output for every scenario begins with a line containing "Scenario #i:", where i is the number of the scenario starting at 1. Then print a single line containing the maximum allowed weight that Hugo can transport to the customer.
Terminate the output for the scenario with a blank line.

Sample Input

1
3 3
1 2 3
1 3 4
2 3 5

Sample Output

Scenario #1:
4

刚开始的思路是把每条边的权值处理一下 用1000005-w作为权值,然后求最短路 再求路径上的最小的那个权值

但是实际上每一次都要尽量找最大的那个权值 而不是让和最大

所以正确的做法是改变一下松弛的条件【最短路题目的核心】

然而还是不太清楚要怎么改 参考了一下题解

dijkstra 和 sfpa都写了下

还有就是 最短路的题目要注意初始化

这道题用cin会T

代码:

#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<map>
#include<cstring>
#include<queue>
#include<stack>
#define inf 0x3f3f3f3f using namespace std; const int maxn = 1005;
int t, n, m;
bool vis[maxn];
int p[maxn][maxn], d[maxn]; /*void dijkstra(int sec)
{
int mmax, max_num;
for(int i = 1; i <= n; i++ ){
vis[i] = false;
d[i] = p[sec][i];
}
vis[sec] = true;
d[sec] = 0;
for(int i = 1; i < n; i++){
mmax = -inf;
for(int j = 1; j <= n; j++){
if(!vis[j] && d[j] > mmax){
mmax = d[j];
max_num = j;
}
}
vis[max_num] = 1;
for(int j = 1; j <= n; j++){
if(!vis[j] && d[j] < min(p[max_num][j], d[max_num])){
d[j] = min(p[max_num][j], d[max_num]);
}
}
}
}*/ void spfa(int sec)
{
queue <int> q;
for(int i = 1; i <= n; i++){
d[i] = -1;
vis[i] = false;
} d[sec] = inf;
vis[sec] = true;
q.push(sec);
while(!q.empty()){
int v = q.front();q.pop();
vis[v] = false;
for(int i = 1; i <= n; i++){
int t = min(d[v], p[v][i]);
if(d[i] < t){
d[i] = t;
if(!vis[i]){
vis[i] = true;
q.push(i);
}
}
}
}
} int main()
{
cin>>t;
for(int cas = 1; cas <= t; cas++){
memset(p, 0, sizeof(p));
scanf("%d%d",&n,&m);
for(int i = 0; i < m; i++){
int a, b, c;
scanf("%d%d%d",&a,&b,&c);
p[a][b] = c;
p[b][a] = c;
}
spfa(1); cout<<"Scenario #"<<cas<<":\n";
cout<<d[n]<<endl<<endl;
} return 0;
}

dijkstra的思路:

做n-1次遍历 每次都找还没访问的节点中d[]最大的那个节点j【起点到这个节点的路径中 最小权值的边 比起点到其他节点的路径中最小权值的边的权值要大】

遍历这个结点的邻接点,做松弛操作

如果这个邻接点 i 没有被访问过 如果他此时的d比   j 的 d 和 j 到 i 的边的权值的最小值要小   那么就要更新 i 的d【让起点到 i 的路径经过 j】

spfa的思路:

设置一个队列 将起点加入队列 每次从队列中取出队头    更新剩余结点

松弛条件和dijkstra类似

给边权值初始化为0, 这样他的权值比所有的d都要小, 也就不会赋值给任何的d了

POJ1797 Heavy Transpotation的更多相关文章

  1. POJ--1797 Heavy Transportation (最短路)

    题目电波: POJ--1797 Heavy Transportation n点m条边, 求1到n最短边最大的路径的最短边长度 改进dijikstra,dist[i]数组保存源点到i点的最短边最大的路径 ...

  2. POJ1797 Heavy Transportation 【Dijkstra】

    Heavy Transportation Time Limit: 3000MS   Memory Limit: 30000K Total Submissions: 21037   Accepted:  ...

  3. (Dijkstra) POJ1797 Heavy Transportation

    Heavy Transportation Time Limit: 3000MS   Memory Limit: 30000K Total Submissions: 53170   Accepted:  ...

  4. POJ1797 Heavy Transportation —— 最短路变形

    题目链接:http://poj.org/problem?id=1797 Heavy Transportation Time Limit: 3000MS   Memory Limit: 30000K T ...

  5. POJ1797 Heavy Transportation (堆优化的Dijkstra变形)

    Background Hugo Heavy is happy. After the breakdown of the Cargolifter project he can now expand bus ...

  6. POJ1797 Heavy Transportation(SPFA)

    题目要求1到n点的最大容量的增广路. 听说是最短路求的,然后乱搞就A了.. 大概能从Bellman-Ford的思想,dk[u]表示从源点出发经过最多k条边到达u点的最短路,上理解正确性. #inclu ...

  7. poj1797 - Heavy Transportation(最大边,最短路变形spfa)

    题目大意: 给你以T, 代表T组测试数据,一个n代表有n个点, 一个m代表有m条边, 每条边有三个参数,a,b,c表示从a到b的这条路上最大的承受重量是c, 让你找出一条线路,要求出在这条线路上的最小 ...

  8. poj1797 Heavy Transportation Dijkstra算法的简单应用

    题目链接:http://poj.org/problem?id=1797 题目就是求所有可达路径的其中的最小值边权的最大值 即对于每一条能够到达的路径,其必然有其最小的承载(其实也就是他们自身的最大的承 ...

  9. POJ1797 Heavy Transportation

    解题思路:典型的Kruskal,不能用floyed(会超时),上代码: #include<cstdio> #include<cstring> #include<algor ...

随机推荐

  1. @PropertySource加载文件的两种用法以及配置文件加载顺序

    第一种: 现在我把资源文件的路径放在application.properties里 config.path=/home/myservice/config.properties @PropertySou ...

  2. android:versionCode和android:versionName 用途(转)

    转自:http://blog.csdn.net/wh_19910525/article/details/8660416 Android的版本可以在androidmainfest.xml中定义,主要有a ...

  3. Nginx配置中文域名

    今天碰到一个好玩的问题,还以为是nginx的缓存,各种清理就差把nginx卸载了,后来想想不对应该是中文域名的问题,对中文进行编码,搞定,如下: ... server { listen 80; ser ...

  4. logback -- 配置详解 -- 一 -- <configuration>及子节点

    附: logback.xml实例 logback -- 配置详解 -- 一 -- <configuration>及子节点 logback -- 配置详解 -- 二 -- <appen ...

  5. 第四章 TCP粘包/拆包问题的解决之道---4.2--- 未考虑TCP粘包导致功能异常案例

    4.2 未考虑TCP粘包导致功能异常案例 如果代码没有考虑粘包/拆包问题,往往会出现解码错位或者错误,导致程序不能正常工作. 4.2.1 TimeServer 的改造 Class : TimeServ ...

  6. composer 更新指定包

    1)网上搜了大半天都不知道怎么更新 componser 包,update upgrade 命令根本不知道怎么用!! 2)其实用 require 命令就可以更新包(它会判断包存不存在,不存在就安装,存在 ...

  7. Steam安装Google Earth VR

    打开Steam 打开火狐浏览器 输入steam://install/348250

  8. Ubuntu图形界面和字符界面转换、指定默认启动界面

    1.按ALT+CTRL+F1.F2.F3.F4.F5.F6.F7可来回切换7个界面(Linux实体机)      其中ALT+CTRL+F7可切换到图形界面(Linux实体机)        如果是V ...

  9. django进阶-查询(适合GET4以上人群阅读)

    前言: 下篇博客写关于bootstrap... 一.如何在脚本测试django from django.db import models class Blog(models.Model): name ...

  10. 使用IBM SVC构建vSphere存储间集群

    使用IBM SVC构建vSphere存储间集群 本文目的 本文描述利用IBM SVC来构建Vsphere 存储间集群 解决方案 什么是vMSC? vShpere存储间集群是一个针对VmwarevSpe ...