Background 

Hugo Heavy is happy. After the breakdown of the Cargolifter project he can now expand business. But he needs a clever man who tells him whether there really is a way from the place his customer has build his giant steel crane to the place where it is needed
on which all streets can carry the weight. 

Fortunately he already has a plan of the city with all streets and bridges and all the allowed weights.Unfortunately he has no idea how to find the the maximum weight capacity in order to tell his customer how heavy the crane may become. But you surely know. 

Problem 

You are given the plan of the city, described by the streets (with weight limits) between the crossings, which are numbered from 1 to n. Your task is to find the maximum weight that can be transported from crossing 1 (Hugo's place) to crossing n (the customer's
place). You may assume that there is at least one path. All streets can be travelled in both directions.

Input

The first line contains the number of scenarios (city plans). For each city the number n of street crossings (1 <= n <= 1000) and number m of streets are given on the first line. The following m lines contain triples of integers
specifying start and end crossing of the street and the maximum allowed weight, which is positive and not larger than 1000000. There will be at most one street between each pair of crossings.

Output

The output for every scenario begins with a line containing "Scenario #i:", where i is the number of the scenario starting at 1. Then print a single line containing the maximum allowed weight that Hugo can transport to the customer.
Terminate the output for the scenario with a blank line.

Sample Input

1
3 3
1 2 3
1 3 4
2 3 5

Sample Output

Scenario #1:
4

刚开始的思路是把每条边的权值处理一下 用1000005-w作为权值,然后求最短路 再求路径上的最小的那个权值

但是实际上每一次都要尽量找最大的那个权值 而不是让和最大

所以正确的做法是改变一下松弛的条件【最短路题目的核心】

然而还是不太清楚要怎么改 参考了一下题解

dijkstra 和 sfpa都写了下

还有就是 最短路的题目要注意初始化

这道题用cin会T

代码:

#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<map>
#include<cstring>
#include<queue>
#include<stack>
#define inf 0x3f3f3f3f using namespace std; const int maxn = 1005;
int t, n, m;
bool vis[maxn];
int p[maxn][maxn], d[maxn]; /*void dijkstra(int sec)
{
int mmax, max_num;
for(int i = 1; i <= n; i++ ){
vis[i] = false;
d[i] = p[sec][i];
}
vis[sec] = true;
d[sec] = 0;
for(int i = 1; i < n; i++){
mmax = -inf;
for(int j = 1; j <= n; j++){
if(!vis[j] && d[j] > mmax){
mmax = d[j];
max_num = j;
}
}
vis[max_num] = 1;
for(int j = 1; j <= n; j++){
if(!vis[j] && d[j] < min(p[max_num][j], d[max_num])){
d[j] = min(p[max_num][j], d[max_num]);
}
}
}
}*/ void spfa(int sec)
{
queue <int> q;
for(int i = 1; i <= n; i++){
d[i] = -1;
vis[i] = false;
} d[sec] = inf;
vis[sec] = true;
q.push(sec);
while(!q.empty()){
int v = q.front();q.pop();
vis[v] = false;
for(int i = 1; i <= n; i++){
int t = min(d[v], p[v][i]);
if(d[i] < t){
d[i] = t;
if(!vis[i]){
vis[i] = true;
q.push(i);
}
}
}
}
} int main()
{
cin>>t;
for(int cas = 1; cas <= t; cas++){
memset(p, 0, sizeof(p));
scanf("%d%d",&n,&m);
for(int i = 0; i < m; i++){
int a, b, c;
scanf("%d%d%d",&a,&b,&c);
p[a][b] = c;
p[b][a] = c;
}
spfa(1); cout<<"Scenario #"<<cas<<":\n";
cout<<d[n]<<endl<<endl;
} return 0;
}

dijkstra的思路:

做n-1次遍历 每次都找还没访问的节点中d[]最大的那个节点j【起点到这个节点的路径中 最小权值的边 比起点到其他节点的路径中最小权值的边的权值要大】

遍历这个结点的邻接点,做松弛操作

如果这个邻接点 i 没有被访问过 如果他此时的d比   j 的 d 和 j 到 i 的边的权值的最小值要小   那么就要更新 i 的d【让起点到 i 的路径经过 j】

spfa的思路:

设置一个队列 将起点加入队列 每次从队列中取出队头    更新剩余结点

松弛条件和dijkstra类似

给边权值初始化为0, 这样他的权值比所有的d都要小, 也就不会赋值给任何的d了

POJ1797 Heavy Transpotation的更多相关文章

  1. POJ--1797 Heavy Transportation (最短路)

    题目电波: POJ--1797 Heavy Transportation n点m条边, 求1到n最短边最大的路径的最短边长度 改进dijikstra,dist[i]数组保存源点到i点的最短边最大的路径 ...

  2. POJ1797 Heavy Transportation 【Dijkstra】

    Heavy Transportation Time Limit: 3000MS   Memory Limit: 30000K Total Submissions: 21037   Accepted:  ...

  3. (Dijkstra) POJ1797 Heavy Transportation

    Heavy Transportation Time Limit: 3000MS   Memory Limit: 30000K Total Submissions: 53170   Accepted:  ...

  4. POJ1797 Heavy Transportation —— 最短路变形

    题目链接:http://poj.org/problem?id=1797 Heavy Transportation Time Limit: 3000MS   Memory Limit: 30000K T ...

  5. POJ1797 Heavy Transportation (堆优化的Dijkstra变形)

    Background Hugo Heavy is happy. After the breakdown of the Cargolifter project he can now expand bus ...

  6. POJ1797 Heavy Transportation(SPFA)

    题目要求1到n点的最大容量的增广路. 听说是最短路求的,然后乱搞就A了.. 大概能从Bellman-Ford的思想,dk[u]表示从源点出发经过最多k条边到达u点的最短路,上理解正确性. #inclu ...

  7. poj1797 - Heavy Transportation(最大边,最短路变形spfa)

    题目大意: 给你以T, 代表T组测试数据,一个n代表有n个点, 一个m代表有m条边, 每条边有三个参数,a,b,c表示从a到b的这条路上最大的承受重量是c, 让你找出一条线路,要求出在这条线路上的最小 ...

  8. poj1797 Heavy Transportation Dijkstra算法的简单应用

    题目链接:http://poj.org/problem?id=1797 题目就是求所有可达路径的其中的最小值边权的最大值 即对于每一条能够到达的路径,其必然有其最小的承载(其实也就是他们自身的最大的承 ...

  9. POJ1797 Heavy Transportation

    解题思路:典型的Kruskal,不能用floyed(会超时),上代码: #include<cstdio> #include<cstring> #include<algor ...

随机推荐

  1. python单例模式控制成只初始化一次,常规型的python单例模式在新式类和经典类中的区别。

    单例模式的写法非常多,但常规型的单例模式就是这样写的,各种代码可能略有差异,但核心就是要搞清楚类属性 实例属性,就很容易写出来,原理完全一模一样. 如下: 源码: class A(object): d ...

  2. iOS6 中 Smart App Banners介绍和使用(转自COCOACHINA.COM)

    转自:http://www.cocoachina.com/applenews/devnews/2012/0924/4842.html iOS 6新增Smart App Banners,也就是“智能Ap ...

  3. 苹果官方xcodeprojectbuild设置指南

    https://developer.apple.com/library/ios/documentation/DeveloperTools/Reference/XcodeBuildSettingRef/ ...

  4. js中对象的深度复制

    // 对象的深度复制 cloneObj(oldObj) var cloneObj = function (obj) { var newObj = {}; if (obj instanceof Arra ...

  5. php 安装rabbitmq扩展无报错版

    需要安装rabbitmq-c,rabbitmq-c是一个用于C语言的,与AMQP server进行交互的client库.下载了v0.5.2版本(https://github.com/alanxz/ra ...

  6. IIS6独立用户建立网站的方法,提高网站安全性

    在Windows server 2003系统下,用IIS架设Web服务器,合理的为每个站点配置独立的Internet来宾账号,这样可以限制Internet 来宾账号的访问权限,只允许其可以读取和执行运 ...

  7. RF变量列表类型@{}和${}列表类型的关系

    总结:@{}列表类型和${}列表类型都可以表示list类型,均可以通过 set variable 和 create list 创建,区别主要是展示格式和引用格式: @{}类型可以通过 set vari ...

  8. RabbitMQ之总结

    P:生成者,消息产生者: C:消息消费者: 红:消息队列: java实现 步骤: 创建连接 从连接中创建通道(相当于JDBC中的Statement) 通过channel声明(创建)队列.(如果队列存在 ...

  9. ARM9通过NFS挂载根文件系统

    当开发板启动以后可以通过在超级终端发送命令来配置NFS. 首先得给开发板一个IP地址,用下面的命令配置即可: #ifconfig 192.168.0.10 经过上面的配置以后在各自的终端中应该都能PI ...

  10. git切换分支(自记)

    git fetch git checkout feature/A4-page