POJ-1958 Strange Towers of Hanoi(线性动规)
Strange Towers of Hanoi
Time Limit: 1000MS Memory Limit: 30000K
Total Submissions: 2677 Accepted: 1741
Description
Background
Charlie Darkbrown sits in another one of those boring Computer Science lessons: At the moment the teacher just explains the standard Tower of Hanoi problem, which bores Charlie to death!
The teacher points to the blackboard (Fig. 4) and says: “So here is the problem:
There are three towers: A, B and C.
There are n disks. The number n is constant while working the puzzle.
All disks are different in size.
The disks are initially stacked on tower A increasing in size from the top to the bottom.
The goal of the puzzle is to transfer all of the disks from tower A to tower C.
One disk at a time can be moved from the top of a tower either to an empty tower or to a tower with a larger disk on the top.
So your task is to write a program that calculates the smallest number of disk moves necessary to move all the disks from tower A to C.”
Charlie: “This is incredibly boring—everybody knows that this can be solved using a simple recursion.I deny to code something as simple as this!”
The teacher sighs: “Well, Charlie, let’s think about something for you to do: For you there is a fourth tower D. Calculate the smallest number of disk moves to move all the disks from tower A to tower D using all four towers.”
Charlie looks irritated: “Urgh… Well, I don’t know an optimal algorithm for four towers… ”
Problem
So the real problem is that problem solving does not belong to the things Charlie is good at. Actually, the only thing Charlie is really good at is “sitting next to someone who can do the job”. And now guess what — exactly! It is you who is sitting next to Charlie, and he is already glaring at you.
Luckily, you know that the following algorithm works for n <= 12: At first k >= 1 disks on tower A are fixed and the remaining n-k disks are moved from tower A to tower B using the algorithm for four towers.Then the remaining k disks from tower A are moved to tower D using the algorithm for three towers. At last the n - k disks from tower B are moved to tower D again using the algorithm for four towers (and thereby not moving any of the k disks already on tower D). Do this for all k 2 ∈{1, …. , n} and find the k with the minimal number of moves.
So for n = 3 and k = 2 you would first move 1 (3-2) disk from tower A to tower B using the algorithm for four towers (one move). Then you would move the remaining two disks from tower A to tower D using the algorithm for three towers (three moves). And the last step would be to move the disk from tower B to tower D using again the algorithm for four towers (another move). Thus the solution for n = 3 and k = 2 is 5 moves. To be sure that this really is the best solution for n = 3 you need to check the other possible values 1 and 3 for k. (But, by the way, 5 is optimal… )
Input
There is no input.
Output
For each n (1 <= n <= 12) print a single line containing the minimum number of moves to solve the problem for four towers and n disks.
Sample Input
No input.
Sample Output
REFER TO OUTPUT.
线性动规,递推即可,不用记忆化搜索。
#include <iostream>
#include <string.h>
#include <math.h>
#include <algorithm>
#include <stdlib.h>
using namespace std;
int dp[13][2];
int hanoi(int n)
{
if(n==1)
return dp[n][0]=1;
else
return dp[n][0]=2*hanoi(n-1)+1;
}
int main()
{
for(int i=1;i<=12;i++)
dp[i][1]=999999;
hanoi(12);
dp[1][1]=1;
for(int i=2;i<=12;i++)
{
for(int j=1;j<i;j++)
{
dp[i][1]=min(dp[i][1],2*dp[i-j][1]+dp[j][0]);
}
}
for(int i=1;i<=12;i++)
printf("%d\n",dp[i][1]);
return 0;
}
POJ-1958 Strange Towers of Hanoi(线性动规)的更多相关文章
- POJ 1958 Strange Towers of Hanoi 解题报告
Strange Towers of Hanoi 大体意思是要求\(n\)盘4的的hanoi tower问题. 总所周知,\(n\)盘3塔有递推公式\(d[i]=dp[i-1]*2+1\) 令\(f[i ...
- POJ 1958 Strange Towers of Hanoi
Strange Towers of Hanoi Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 3784 Accepted: 23 ...
- POJ1958 Strange Towers of Hanoi [递推]
题目传送门 Strange Towers of Hanoi Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 3117 Ac ...
- POJ-1953 World Cup Noise(线性动规)
World Cup Noise Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 16374 Accepted: 8097 Desc ...
- 【POJ 1958】 Strange Towers of Hanoi
[题目链接] http://poj.org/problem?id=1958 [算法] 先考虑三个塔的情况,g[i]表示在三塔情况下的移动步数,则g[i] = g[i-1] * 2 + 1 再考虑四个塔 ...
- Strange Towers of Hanoi POJ - 1958(递推)
题意:就是让你求出4个塔的汉诺塔的最小移动步数,(1 <= n <= 12) 那么我们知道3个塔的汉诺塔问题的解为:d[n] = 2*d[n-1] + 1 ,可以解释为把n-1个圆盘移动到 ...
- poj1958——Strange Towers of Hanoi
The teacher points to the blackboard (Fig. 4) and says: "So here is the problem: There are thre ...
- POJ1958:Strange Towers of Hanoi
我对状态空间的理解:https://www.cnblogs.com/AKMer/p/9622590.html 题目传送门:http://poj.org/problem?id=1958 题目要我们求四柱 ...
- Strange Towers of Hanoi
题目链接:http://sfxb.openjudge.cn/dongtaiguihua/E/ 题目描述:4个柱子的汉诺塔,求盘子个数n从1到12时,从A移到D所需的最大次数.限制条件和三个柱子的汉诺塔 ...
随机推荐
- JS去除字符串左右两端的空格
去除字符串左右两端的空格,在vbscript里面可以轻松地使用 trim.ltrim 或 rtrim,但在js中却没有这3个内置方法,需要手工编写.下面的实现方法是用到了正则表达式,效率不错,并把这三 ...
- 用plsql 导入导出oracle表结构数据
一.导出 (1)导出数据 进入pl/sql,"工具"---->"Export Tables...",然后在弹出的对话框中选择要导出的表,最后点击" ...
- php根据地理坐标获取国家、省份、城市,及周边数据类
功能:当App获取到用户的地理坐标时,可以根据坐标知道用户当前在那个国家.省份.城市,及周边有什么数据. 原理:基于百度Geocoding API 实现,需要先注册百度开发者,然后申请百度AK(密钥) ...
- ASP.NET Web API 使用Swagger使用笔记
https://www.cnblogs.com/lhbshg/p/8711604.html 最近换了工作,其中Webapi这块没有文档,之前有了解过Swagger借此机会好好整理下常用的地方分享给有需 ...
- 5 -- Hibernate的基本用法 --2 2 Hibernate的数据库操作
在所有的ORM框架中有一个非常重要的媒介 : PO(持久化对象:Persistent Object).持久化对象的作用是完成持久化操作,简单地说,通过该对象可对数据执行增.删.改的操作 ------ ...
- Log4net用法(.config文件)
1.引用log4net.dll 2.在AssemblyInfo.cs中添加初始化: [assembly: log4net.Config.XmlConfigurator(ConfigFile = &qu ...
- SSL延迟有多大 (Https)
据说,Netscape公司当年设计SSL协议的时候,有人提过,将互联网所有链接都变成HTTPs开头的加密链接. 这个建议没有得到采纳,原因之一是HTTPs链接比不加密的HTTP链接慢很多.(另一个原因 ...
- 关于 Handler 与 opener
我们可以使用 urllib.request.Request() 构造请求对象,但是对于一些更高级的操作,比如 Cookies 处理.代理设置 .身份验证等等,Request() 是处理不了的这时就需要 ...
- 配置React Native环境及解决运行异常
一. 安装Homebrew: Homebrew的官网(多语言版本)简单明了地介绍了如何安装和使用这个工具,;并提供了自己的Wiki. brew的安装很简单,使用一条ruby命令即可,Mac系统上已经默 ...
- Android逆向笔记之AndroidKiller与Android Studio的使用
https://blog.csdn.net/a_1054280044/article/details/60465267 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog. ...