二叉堆(binary heap)
堆(heap) 亦被称为:优先队列(priority queue),是计算机科学中一类特殊的数据结构的统称。堆通常是一个可以被看做一棵树的数组对象。在队列中,调度程序反复提取队列中第一个作业并运行,因而实际情况中某些时间较短的任务将等待很长时间才能结束,或者某些不短小,但具有重要性的作业,同样应当具有优先权。堆即为解决此类问题设计的一种数据结构。
本文地址:http://www.cnblogs.com/archimedes/p/binary-heap.html,转载请注明源地址。
逻辑定义
n个元素序列{k1,k2...ki...kn},当且仅当满足下列关系时称之为堆:
(ki <= k2i, ki <= k2i+1)或者(ki >= k2i, ki >= k2i+1), (i = 1,2,3,4...n/2)
二叉堆一般用数组来表示。如果根节点在数组中的位置是1,第n个位置的子节点分别在2n和 2n+1。因此,第1个位置的子节点在2和3,第2个位置的子节点在4和5。以此类推。这种基于1的数组存储方式便于寻找父节点和子节点。
如果存储数组的下标基于0,那么下标为i的节点的子节点是2i + 1与2i + 2;其父节点的下标是⌊(i − 1) ∕ 2⌋。
如下图的两个堆:
1 11
/ \ / \
2 3 9 10
/ \ / \ / \ / \
4 5 6 7 5 6 7 8
/ \ / \ / \ / \
8 9 10 11 1 2 3 4
将这两个堆保存在以1开始的数组中:
位置: 1 2 3 4 5 6 7 8 9 10 11
左图: 1 2 3 4 5 6 7 8 9 10 11
右图: 11 9 10 5 6 7 8 1 2 3 4
性质
二叉堆是完全二叉树或者是近似完全二叉树。
二叉堆满足二个特性:
1.父结点的键值总是大于或等于(小于或等于)任何一个子节点的键值。
2.每个结点的左子树和右子树都是一个二叉堆(都是最大堆或最小堆)。
当父结点的键值总是大于或等于任何一个子节点的键值时为最大堆。当父结点的键值总是小于或等于任何一个子节点的键值时为最小堆。
最小堆 最大堆
堆支持以下的基本操作:
- build:建立一个空堆;
- insert:向堆中插入一个新元素;
- update:将新元素提升使其符合堆的性质;
- get:获取当前堆顶元素的值;
- delete:删除堆顶元素;
- heapify:使删除堆顶元素的堆再次成为堆。
某些堆实现还支持其他的一些操作,如斐波那契堆支持检查一个堆中是否存在某个元素。
基本操作实现:
1、删除优先级最高的元素(DeleteMin)
此操作分3步:
(1)直接删除根
(2)用最后一个元素代替根
(3)将堆向下重新调整
输出堆顶元素之后,以堆中最后一个元素替代之;然后将根结点值与左、右子树的根结点值进行比较,并与其中小者进行交换;重复上述操作,直到是叶子结点或其关键字值小于等于左、右子树的关键字的值,将得到新的堆。称这个从堆顶至叶子的调整过程为“筛选”
调整堆算法实现如下:
void down(int p) /* 调整堆算法 */
{
int q = p * ; /* 向下调整算法,p代表当前结点,q代表子结点 */
a = heap[p]; /* 保存当前结点的值 */
while(q <= hlength) { /* hlength为堆中元素的个数 */
/* 选择两个子节点中的一个最小的 */
if(q < hlength && heap[q] > heap[q + ])
q++;
if(heap[q] >= a) { /* 如果当前结点比子节点小,就结束*/
break;
} else { /* 否则就交换 */
heap[p] = heap[q];
p = q;
q = p * ;
}
}
heap[p] = a; /* 安排原来的结点 */
}
删除最小元素,返回该最小元素:
int DeleteMin()
{
/* 删除最小元素算法 */
int r = heap[]; /* 取出最小元素 */
heap[] = heap[hlength--]; /* 把最后一个叶子结点赋值给根结点 */
down(); /* 调用向下调整算法 */
return r;
}
2、在堆中插入一个新元素Insert(x):
向上调整算法:
void up(int p)
{
/* 向上调整算法,p代表当前结点,q代表父结点 */
int q = p / ; /* 获取当前结点的父结点 */
a = heap[p]; /* 保存当前结点的值 */
while(q >= && a < heap[q]) {
heap[p] = heap[q]; /* 如果当前结点的值比父母结点的值小,就交换 */
p = q;
q = p / ;
}
heap[p] = a; /* 安排原来的结点 */
}
插入元素算法:
void insert(int a)
{
heap[++hlength] = a; /* 先往堆里插入结点值 */
up(hlength); /* 向上调整 */
}
3、将x的优先级上升为p:
void IncreaseKey(int a, int p) /* 把p的优先级升为a */
{
if(heap[p] < a)
return;
heap[p] = a;
up(p);
}
4、建立堆:
void bulid() /* 建堆算法 */
{
int i;
for(i = hlength / ; i > ; i--)
down(i); /* 从最后一个非终端结点开始进行调整 */
}
编程实践
poj2051 Argus
http://poj.org/problem?id=2051
#include<stdio.h>
#include<string.h>
char str[];
typedef struct Node {
int now, Q, P;
}Node;
Node node[];
void down(Node H[], int s, int m)
{
int j;
Node rc = H[s];
for(j = s * ; j <= m; j *= ) {
if(j < m) {
if(H[j].now > H[j + ].now) {
j++;
} else {
if((H[j].now == H[j + ].now) && (H[j].Q > H[j + ].Q))
j++;
}
}
if(rc.now < H[j].now || (rc.now == H[j].now && rc.Q < H[j].Q))
break;
H[s] = H[j];
s = j;
}
H[s] = rc;
} void BulidMinHeap(Node H[], int length)
{
int i;
for(i = length / ; i > ; i--)
down(H, i, length);
} void solve()
{
int i, len, K;
i = ;
while(scanf("%s", str) && str[] == 'R') {
scanf("%d %d", &node[i].Q, &node[i].P);
getchar();
node[i].now = node[i].P;
i++;
}
len = i - ;
scanf("%d", &K);
BulidMinHeap(node, len);
for(i = ; i <= K; i++) {
printf("%d\n", node[].Q);
node[].now += node[].P;
down(node, , len);
}
}
int main()
{
solve();
return ;
}
参考资料
1、Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein(潘金贵等译)《算法导论》. 机械工业出版社.
2、Vuillemin, J. (1978). A data structure for manipulating priority queues.Communications of the ACM21, 309–314.
3、ACM/ICPC 算法训练教程
4、《数据结构》严蔚敏、吴伟民
5、维基百科
二叉堆(binary heap)的更多相关文章
- 数据结构 之 二叉堆(Heap)
注:本节主要讨论最大堆(最小堆同理). 一.堆的概念 堆,又称二叉堆.同二叉查找树一样,堆也有两个性质,即结构性和堆序性. 1.结构性质: 堆是一棵被完全填满的二叉树,有可能的 ...
- 【数据结构与算法Python版学习笔记】树——利用二叉堆实现优先级队列
概念 队列有一个重要的变体,叫作优先级队列. 和队列一样,优先级队列从头部移除元素,不过元素的逻辑顺序是由优先级决定的. 优先级最高的元素在最前,优先级最低的元素在最后. 实现优先级队列的经典方法是使 ...
- 堆(Heap)和二叉堆(Binary heap)
堆(Heap) The operations commonly performed with a heap are: create-heap: create an empty heap heapify ...
- Binary Heap(二叉堆) - 堆排序
这篇的主题主要是Heapsort(堆排序),下一篇ADT数据结构随笔再谈谈 - 优先队列(堆). 首先,我们先来了解一点与堆相关的东西.堆可以实现优先队列(Priority Queue),看到队列,我 ...
- 二叉堆(binary heap)—— 优先队列的实现
二叉堆因为对应着一棵完全二叉树,因而可以通过线性数组的方式实现. 注意,数组第 0 个位置上的元素,作为根,还是第 1 个位置上的元素作为根? 本文给出的实现,以数组第 1 个位置上的元素作为根,则其 ...
- C# 实现简单的 Heap 堆(二叉堆)
如题,C# 实现简单的二叉堆的 Push() 和 Pop(), 如有不足欢迎指正. 另外,在C#中使用 Heap 的相似功能可以考虑使用:Priority Queues,SortedDictiona ...
- 在A*寻路中使用二叉堆
接上篇:A*寻路初探 GameDev.net 在A*寻路中使用二叉堆 作者:Patrick Lester(2003年4月11日更新) 译者:Panic 2005年3月28日 译者序 这一篇文章,是&q ...
- D&F学数据结构系列——二叉堆
二叉堆(binary heap) 二叉堆数据结构是一种数组对象,它可以被视为一棵完全二叉树.同二叉查找树一样,堆也有两个性质,即结构性和堆序性.对于数组中任意位置i上的元素,其左儿子在位置2i上,右儿 ...
- 二叉堆复习(包括d堆)
要期中考了……我真的是什么也不会啊,书都没看过TAT. 好吧整理一下二叉堆,这里就以最大堆为例好了. 首先二叉堆其实是一棵CBT,满足父节点的键值大于左右子节点的键值(wikipedia把这个叫键值, ...
随机推荐
- 解决Deprecated: mysql_connect(): The mysql extension is deprecated and will be removed in the future:
php 5个版本,5.2.5.3.5.4.5.5,怕跟不上时代,新的服务器直接上5.5,但是程序出现如下错误:Deprecated: mysql_connect(): The mysql extens ...
- VS-Visual Studio-IIS Express 支持局域网访问
本文转自:http://www.itnose.net/detail/6132793.html 使用Visual Studio开发Web网页的时候有这样的情况:想要在调试模式下让局域网的其他设备进行访问 ...
- CSS 块状元素和内联元素
在用CSS布局页面的时候,我们会将HTML标签分成两种,块状元素和内联元素(我们平常用到的div和p就是块状元素,链接标签a就是内联元素) 块状元素一般是其他元素的容器,可容纳内联元素和其他块状元素, ...
- umbraco之DocumentType
DocumentType定义了数据字段,这就像我们在数据库中定义表一样,这个数据字段就像表中的一个字段或者一个列.但不同的是,在umbraco里数据是分等级而不是一个表格性质. 这样就可以使用一个基本 ...
- 第一个sprint心得及感想
经过两个星期的努力,第一个周期的任务终于完成,通过这次团队协作,学到了很多东西,首先是把任务细分化,把大的任务分为每天完成,然后团队个人都有自己的任务份额,这样子就不会全压在一个人身上.还有就是学会了 ...
- JS 的 call apply bind 方法
js的call apply bind 方法都很常见,目的都是为了改变某个方法的执行环境(context) call call([thisObj[,arg1[, arg2[, [,.argN]]]] ...
- thread_fork/join并发框架2
转自 http://blog.csdn.net/mr_zhuqiang/article/details/48300229 三.使用异步方式 invokeAll(task1,task2); 是同步方式 ...
- sql date()函数,时间格式
(1).GETDATE() 函数从 SQL Server 返回当前的日期和时间. 语法 GETDATE() 实例 下面是 SELECT 语句: SELECT GETDATE() AS CurrentD ...
- Weex中文文档
这里整理当前已译出的Weex中文文档,如需查阅完整Weex文档,请访问http://alibaba.github.io/weex/doc/ . 同时也欢迎大家参与Weex中文文档翻译 [Guide] ...
- JavaScript语言知识收藏
接触Web开发也已经有一段时间了,对javascript的认识也比以前有了更加深入的认识了,所以觉得应该整理一下. 一.JavaScript不支持函数(方法)的重载,用一个例子证明如下: functi ...