OpenCV学习笔记(3)——图像的基本操作
- 获取图像的像素值并修改
- 获取图像的属性(信息)
- 图像的ROI()
- 图像通道的拆分及合并
1.获取并修改像素值
先读入图像装入一个图像实体,然后该实体相当于一个多维list,可以直接用数组操作提取像素信息,像素信息为按照BGR顺序排列(灰度图像会返回其灰度值)的一个list,也可以用list操作提取其单个值
import numpy as np
import cv2 img = cv2.imread('2.jpg')
px = img[100,100]
print(px)
blue = img[100,100,0]
print(blue)
##[215 218 222]
##215
还可以通过直接给像素赋值的方式来改变像素值
img[100,100] = [255,255,255]
结合Numpy库的操作会获得更好的获取像素值方法
import numpy as np
import cv2 img = cv2.imread('2.jpg')
px = img.item(10,10,2)%获取像素值
print(px)
img.itemset((10,10,2),100)%修改像素值
print(img.item(10,10,2))
#211
#100
这个方法只能获取到标量值,即无法用img.item(10,10)这样的操作获取一个list,只能通过输入一个3维坐标获取单个值
2.获取图像属性
图像属性包括:行列,通道(色彩),图像数据类型,像素数目等
img.shape可以获取图像的形状,其返回值是一个包括行数,列数,通道数的元组。
import numpy as np
import cv2
img = cv2.imread('2.jpg')
print(img.shape)
#(300, 450, 3)
如果读入的图是一个灰度图,则不返回通道数,此时若调取第3个值会报错。可以通过检查返回值就可以知道加载图像是灰度图还是彩图。
img.size会返回图像的像素数
img.dtype返回的是图像的数据类型(一般是uint8),该步在debug时很重要,因为在OpenCV-Python代码中经常出现数据类型不一致的情况
3、图像ROI
即提取图像的特点区域,通过切片方式来实现
import numpy as np
import cv2
img = cv2.imread('2.jpg')
eye = img[160:180,140:150]
img[0:20,0:10] = eye
4.拆分及合并图像通道
即将BGR三个通道拆分分别进行操作,或将三个通道合并形成BGR图像
import numpy as np
import cv2
img = cv2.imread('2.jpg')
b,g,r = cv2.split(img) #可以把图像分成三个通道
# img = cv2.merge(b,g,r) 教程上说可以这样用,但输入后会提示只能输入两个值
cv2.imshow('img',r) #在尝试中发现imshow能显示的图像必须有1或3或4条信道
cv2.waitKey(0)
cv2.destroyAllWindows()
但是cv2.split操作较耗时,一般还是用切片方法
b = img[:,:,0]
同理,若要使所有红色通道均为0,可以
img[:,:,2] =
5.为图像扩边(填充)
如果想在图像周围创建一个边,就想相框一样,可以使用cv2.copyMakeBorder()函数。他经常在卷积运算或0填充时被用到。它包括以下几个参数:
- src输入图像
- top,bottom,left,right对应边界的像素数目
- borderType要添加那种类型的边界,类型有
– cv2.BORDER_CONSTANT 添加有颜色的常数值边界,还需要下一个参数(value)。
– cv2.BORDER_REFLECT 边界元素的镜像。比如: fedcba|abcdefgh|hgfedcb
– cv2.BORDER_REFLECT_101 or cv2.BORDER_DEFAULT跟上面一样,但稍作改动。例如: gfedcb|abcdefgh|gfedcba
– cv2.BORDER_REPLICATE 重复最后一个元素。例如: aaaaaa|abcdefgh|hhhhhhh
– cv2.BORDER_WRAP 不知道怎么说了, 就像这样: cdefgh|abcdefgh|abcdefg
- value边界颜色,当边界类型为cv2.BORDER_CONSTANT
OpenCV学习笔记(3)——图像的基本操作的更多相关文章
- [OpenCV学习笔记3][图像的加载+修改+显示+保存]
正式进入OpenCV学习了,前面开始的都是一些环境搭建和准备工作,对一些数据结构的认识主要是Mat类的认识: [1.学习目标] 图像的加载:imread() 图像的修改:cvtColor() 图像的显 ...
- OpenCV学习笔记(10)——图像梯度
学习图像梯度,图像边界等 梯度简单来说就是求导. OpenCV提供了三种不同的梯度滤波器,或者说高通滤波器:Sobel,Scharr和Lapacian.Sobel,Scharr其实就是求一阶或二阶导. ...
- OpenCV学习笔记(7)——图像阈值
简单阈值,自适应阈值,Otsu's二值化等 1.简单阈值 当像素值高于阈值时,我们给这个像素赋予一个新值,否则给他赋予另一个值.这个函数就是cv2.threshhold().这个函数的第一个参数就是原 ...
- opencv学习笔记(七)---图像金字塔
图像金字塔指的是同一图像不同分辨率的子图的集合,有向下取样金字塔,向上取样金字塔,拉普拉斯金字塔....它是图像多尺度表达的一种,最主要的是用于图像的分割 向下取样金字塔指高分辨率图像向低分辨率图像的 ...
- opencv学习笔记(六)---图像梯度
图像梯度的算法有很多方法:sabel算子,scharr算子,laplacian算子,sanny边缘检测(下个随笔)... 这些算子的原理可参考:https://blog.csdn.net/poem_q ...
- opencv学习笔记(五)----图像的形态学操作
图像的形态学操作有基本的腐蚀和膨胀操作和其余扩展形态学变换操作(高级操作)-----开运算,闭运算,礼帽(顶帽)操作,黑帽操作...(主要也是为了去噪声,改善图像) 形态学操作都是用于处理二值图像(其 ...
- opencv学习笔记3——图像缩放,翻转和阈值分割
#图像的缩放操作 #cv.resize(src,dsize,dst=None,,fx=None,fy=None,interpolation=None) #src->原图像,dsize->目 ...
- (转) OpenCV学习笔记大集锦 与 图像视觉博客资源2之MIT斯坦福CMU
首页 视界智尚 算法技术 每日技术 来打我呀 注册 OpenCV学习笔记大集锦 整理了我所了解的有关OpenCV的学习笔记.原理分析.使用例程等相关的博文.排序不分先后,随机整理的 ...
- OpenCV 学习笔记 02 使用opencv处理图像
1 不同色彩空间的转换 opencv 中有数百种关于不同色彩空间的转换方法,但常用的有三种色彩空间:灰度.BRG.HSV(Hue-Saturation-Value) 灰度 - 灰度色彩空间是通过去除彩 ...
随机推荐
- SuperMap webgl对接iportal托管的三维服务
在webgl中对接iportal加密的三维服务时,需要提前注册key值.Cesium.Credential.CREDENTIAL = new Cesium.Credential("你的key ...
- Python多线程异步任务队列
原文地址 python的多线程异步常用到queue和threading模块 #!/usr/bin/env python # -*- coding: UTF-8 -*- import logging i ...
- On Java 8
On Java 8本书原作者为 [美] Bruce Eckel,即<Java 编程思想>的作者.本书是事实上的 <Java 编程思想>第五版.<Java 编程思想> ...
- maven中使用jetty插件
<plugin> <groupId>org.mortbay.jetty</groupId> <artifactId>jetty-maven-plugin ...
- springboot中使用拦截器
5.1 回顾SpringMVC使用拦截器步骤 自定义拦截器类,实现HandlerInterceptor接口 注册拦截器类 5.2 Spring Boot使用拦截器步骤 5.2.1 按照S ...
- cmd完成拷贝文件,并生成两个快捷脚本
@echo off@echo ------------------------------ @echo 正在创建目录 color 03if exist y:\00程序数据备份 ( md y:\00程序 ...
- 【BZOJ1176】Mokia
题目大意:给定一个 N*N 的矩形,有 Q 次操作,每个操作可以是矩形单点修改或查询子矩形的权值和. 题解:CDQ分治适合处理修改操作之间互不影响且支持离线的题目. 满足以上操作条件的显然可以树套树来 ...
- python之爬取网页数据总结(一)
今天尝试使用python,爬取网页数据.因为python是新安装好的,所以要正常运行爬取数据的代码需要提前安装插件.分别为requests Beautifulsoup4 lxml 三个插件 ...
- k8s管理pod资源对象(下)
一.标签与标签选择器 1.标签是k8s极具特色的功能之一,它能够附加于k8s的任何资源对象之上.简单来说,标签就是键值类型的数据,它们可于资源创建时直接指定,也可随时按需添加于活动对象中,而后即可由标 ...
- ubuntu编译安装openssl
http://blog.bccn.net/%E9%9D%99%E5%A4%9C%E6%80%9D/66642 su root 不然权限不够 cd /usr/src wget https://www. ...