洛谷-P3389-高斯消元模板
链接:
https://www.luogu.org/problem/P3389
题意:
给定一个线性方程组,对其求解
思路:
高斯消元,从第一项消到最后一项,消成一个上三角矩阵.再从最后一项依次向上回带.
在消每一项的时候找到系数最大的一项开始消,将其系数置位1,再向下消,具体做法百度太多了.
代码:
#include <bits/stdc++.h>
using namespace std;
double Map[110][110];
double ans[110];
double eps = 1e-7;
int n;
bool Guess()
{
for (int i = 1;i <= n;i++)
{
int ml = i;
for (int j = i+1;j <= n;j++)
{
if (fabs(Map[ml][i]) < fabs(Map[j][i]))
ml = j;
}
if (fabs(Map[ml][i]) < eps)
return false;
if (ml != i)
swap(Map[ml], Map[i]);//换行
double div = Map[i][i];
for (int j = i+1;j <= n+1;j++)
Map[i][j] /= div;//讲要消的列系数变为1
for (int j = i+1;j <= n;j++)
{
div = Map[j][i];//消的值对应系数
for (int k = i;k <= n+1;k++)
Map[j][k] -= div*Map[i][k];//消元
}
}
ans[n] = Map[n][n+1];
//回带
for (int i = n-1;i >= 1;i--)
{
ans[i] = Map[i][n+1];
for (int j = i+1;j <= n;j++)
ans[i] -= (Map[i][j]*ans[j]);
}
}
int main()
{
scanf("%d", &n);
for (int i = 1;i <= n;i++)
{
for (int j = 1;j <= n+1;j++)
scanf("%lf", &Map[i][j]);
}
if (Guess())
{
for (int i = 1;i <= n;i++)
printf("%.2lf\n", ans[i]);
}
else
printf("No Solution");
return 0;
}
洛谷-P3389-高斯消元模板的更多相关文章
- 洛谷P3389 高斯消元 / 高斯消元+线性基学习笔记
高斯消元 其实开始只是想搞下线性基,,,后来发现线性基和高斯消元的关系挺密切就一块儿在这儿写了好了QwQ 先港高斯消元趴? 这个算法并不难理解啊?就会矩阵运算就过去了鸭,,, 算了都专门为此写个题解还 ...
- 【Luogu】P3389高斯消元模板(矩阵高斯消元)
题目链接 高斯消元其实是个大模拟qwq 所以就着代码食用 首先我们读入 ;i<=n;++i) ;j<=n+;++j) scanf("%lf",&s[i][j]) ...
- 高斯消元模板!!!bzoj1013
/* 高斯消元模板题 n维球体确定圆心必须要用到n+1个点 设圆心坐标(x1,x2,x3,x4...xn),半径为C 设第i个点坐标为(ai1,ai2,ai3,,,ain)那么对应的方程为 (x1-a ...
- HDU 3359 高斯消元模板题,
http://acm.hdu.edu.cn/showproblem.php?pid=3359 题目的意思是,由矩阵A生成矩阵B的方法是: 以a[i][j]为中心的,哈曼顿距离不大于dis的数字的总和 ...
- Luogu P3389 高斯消元
https://www.luogu.com.cn/problem/P3389 主元消元法[模板] 高斯消元是解决多元线性方程组的方法,再学习它之前,先引入一个东西--行列式 行列式的性质: 这里我们只 ...
- 高斯消元模板(pascal)
洛谷P3389评测 program rrr(input,output); const eps=1e-8; var a:..,..]of double; n,i,j,k:longint; t:doubl ...
- 【转】高斯消元模板 by kuangbin
写的很好,注释很详细,很全面. 原blog地址:http://www.cnblogs.com/kuangbin/archive/2012/09/01/2667044.html #include< ...
- kuangbin大佬的高斯消元模板
dalao解释的博客 #include <bits/stdc++.h> using namespace std; ; int a[MAXN][MAXN];//增广矩阵 int x[MAXN ...
- java高斯消元模板
//package fuc; import java.io.PrintStream; import java.math.BigInteger; import java.util.Scanner; pu ...
随机推荐
- pandas中.value_counts()用于统计数据集中的某一列
value_counts()是一种查看表格某列中有多少个不同值的快捷方法,并计算每个不同值有在该列中有多少重复值.value_counts()是Series拥有的方法,一般在DataFrame中使用时 ...
- finereport JS 获取按钮所在单元格的值及获取当前报表的变量
1.通过按钮获取单元格所在的值 debugger; var cr; if(window.lineboxes) { var cells = []; for (var i = 0; i < line ...
- .net 读取xml文件
xml 文件 <?xml version="1.0" encoding="utf-8" ?><root><name value=& ...
- FTL2
ABSTACT 1.NAND flash memory (主要缺点): (1)partial page updates (2)general-purpose cache usually does n ...
- Employee Free Time
We are given a list schedule of employees, which represents the working time for each employee. Each ...
- 使用Python基于HyperLPR/Mask-RCNN的中文车牌识别
基于HyperLPR的中文车牌识别 Bolg:https://blog.csdn.net/lsy17096535/article/details/78648170 https://www.jiansh ...
- docopt 安装及基本应用
什么是 docopt docopt是一种python 编写的命令行执行脚本的交互语言. 它是一种语言! 它是一种语言! 它是一种语言! 使用这种语言可以在自己的脚本中,添加一些规则限制,这样脚本在执行 ...
- [转载]布隆过滤器(Bloom Filter)
[转载]布隆过滤器(Bloom Filter) 这部分学习资料来源:https://www.youtube.com/watch?v=v7AzUcZ4XA4 Filter判断不在,那就是肯定不在:Fil ...
- java实现spark常用算子之intersection
import org.apache.spark.SparkConf;import org.apache.spark.api.java.JavaRDD;import org.apache.spark.a ...
- java实现spark常用算子之groupbykey
import org.apache.spark.SparkConf;import org.apache.spark.api.java.JavaPairRDD;import org.apache.spa ...