Sumdiv(约数和问题)
题目地址
看到这题的题解,大佬都说是小学奥数,蔡得我不敢鸡声。
求 \(a^b\) 所有的约数之和 mod \(9901\) \((1<=a,b<=5*10^7)\)
题解
做这道题,我还赶紧去看了一下 唯一分解定理
我们先把 \(a\) 分解质因数
\[a=p_1^{c_1}*p_2^{c_2}*...*p_n^{c_n}\]
比如说 \(12\) 可以分成 \(2^2+3^1\) 啦
因为 同指数幂相乘,指数不变,底数相乘 ,所以就有:
\[a^b=p_1^{c_1*b}*p_2^{c_2*b}*...*p_n^{c_n*b}\]
根据 唯一分解定理,\(a^b\) 的约数和就是
\[(1+p_1+p_1^2+...+p_1^{c_1*b})*(1+p_2+p_2^2+...+p_2^{c_2*b})*...*(1+p_3+p_3^2+...+p_3^{c_3*b})\]
大佬看出了是等比数列,而我这个蒟蒻没有看出来
因为等比数列的求和公式要用除法,除法不满足 \(\text{mod}\) 的分配律
所以我们就迎来了这个题目的重点——分治
设 \(\text{sum}(p,c)\),为 \((1+p+p^2+...+p^{c})\)
- 若 \(c\) 为奇数,则有
\[\text{sum}(p,c)=(1+p+...+p^{\frac{c-1}{2}})+(p^{\frac{c+1}{2}}+...+p^c)\]
\[=1*(1+p+...+p^{\frac{c-1}{2}})+\frac{c+1}{2}*(1+p+...+p^{\frac{c-1}{2}})\]
\[=(1+\frac{c+1}{2})*\text{sum}(p,\frac{c-1}{2})\]
- 若 \(c\) 为偶数数,类似的有
\[\text{sum}(p,c)=(1+\frac{p}{2})*\text{sum}(p,\frac{p}{2}-1)*p^c\]
结合快速幂,时间复杂度上可以过得去
讲了这么多(虽然是看书),我忘了告诉你这个题目我是口胡的。
Sumdiv(约数和问题)的更多相关文章
- poj 1845 Sumdiv 约数和定理
Sumdiv 题目连接: http://poj.org/problem?id=1845 Description Consider two natural numbers A and B. Let S ...
- Sumdiv(快速幂+约数和)
Sumdiv Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 16244 Accepted: 4044 Description C ...
- 【POJ 1845】 Sumdiv (整数唯分+约数和公式+二分等比数列前n项和+同余)
[POJ 1845] Sumdiv 用的东西挺全 最主要通过这个题学了约数和公式跟二分求等比数列前n项和 另一种小优化的整数拆分 整数的唯一分解定理: 随意正整数都有且仅仅有一种方式写出其素因子的乘 ...
- 【题解】POJ1845 Sumdiv(乘法逆元+约数和)
POJ1845:http://poj.org/problem?id=1845 思路: AB可以表示成多个质数的幂相乘的形式:AB=(a1n1)*(a2n2)* ...*(amnm) 根据算数基本定理可 ...
- poj 1845 Sumdiv(约数和,乘法逆元)
题目: 求AB的正约数之和. 输入: A,B(0<=A,B<=5*107) 输出: 一个整数,AB的正约数之和 mod 9901. 思路: 根据正整数唯一分解定理,若一个正整数表示为:A= ...
- 【POJ1845】Sumdiv(数论/约数和定理/等比数列二分求和)
题目: POJ1845 分析: 首先用线性筛把\(A\)分解质因数,得到: \[A=p_1^{a_1}*p_2^{a_2}...*p_n^{a_n} (p_i是质数且a_i>0) \] 则显然\ ...
- 约数之和(POJ1845 Sumdiv)
最近应老延的要求再刷<算法进阶指南>(不得不说这本书不错)...这道题花费了较长时间~(当然也因为我太弱了)所以就写个比较易懂的题解啦~ 原题链接:POJ1845 翻译版题目(其实是AcW ...
- Sumdiv 等比数列求和
Sumdiv Sumdiv Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 15364 Accepted: 3790 De ...
- poj 1845 POJ 1845 Sumdiv 数学模板
筛选法+求一个整数的分解+快速模幂运算+递归求计算1+p+p^2+````+p^nPOJ 1845 Sumdiv求A^B的所有约数之和%9901 */#include<stdio.h>#i ...
随机推荐
- [CSP-S模拟测试]:小P的2048(模拟)
题目描述 最近,小$P$迷上了一款叫做$2048$的游戏.这块游戏在一个$n\times n$的棋盘中进行,棋盘的每个格子中可能有一个形如$2^k(k\in N^*)$的数,也可能是空的.游戏规则介绍 ...
- InfluxDB安装使用
influxdb简介 启动步骤 服务启停:sudo service influxdb start/stop/restart 安装过程: 1.增加yum源 cat <<EOF | sud ...
- Linux shell - 重命名文件和文件夹(mv)
linux下重命名文件或文件夹的命令mv既可以重命名,又可以移动文件或文件夹. 例子:将目录A重命名为B mv A B 例子:将/a目录移动到/b下,并重命名为c mv /a /b/c
- loj#6157 A ^ B Problem
分析 用并查集维护 每次一个连通块的每个点记录它到当前连通块的根的异或值 对于不符合的情况容易判断 最后判断是否都在一个连通块内然后记录答案即可 代码 #include<bits/stdc++. ...
- 背包&数位dp(8.7)
背包 0/1背包 设dp[i][j]为前i个物品选了j体积的物品的最大价值/方案数 dp[i][j]=max(dp[i-1][j-w[i]]+v[i],dp[i-1][j])(最大价值) dp[i][ ...
- leetcode 52 N皇后问题 II
51的简化版,省去根据排列话棋盘的工作,直接计数,代码: class Solution { public: int totalNQueens(int n) { ; vector<); dfs(n ...
- AtomicIntegerFieldUpdater 源码分析
AtomicIntegerFieldUpdater AtomicIntegerFieldUpdater 能解决什么问题?什么时候使用 AtomicIntegerFieldUpdater? 1)字段必须 ...
- 阶段1 语言基础+高级_1-3-Java语言高级_1-常用API_1_第4节 ArrayList集合_14-ArrayList集合的常用方法和循环
常用的方法记下来 刚创建好,什么都不放的 add添加方法肯定是成功的. 加了这么多的值都没有用返回值,输出的结果可以看到都是添加成功的 获取索引值 ALT+回车键,推荐使用本地变量去接收 这样左边就会 ...
- dvorak键盘布局调整
一站直达: http://www.kaufmann.no/roland/dvorak/
- [Udemy] ES 7 and Elastic Stack - part 1
Section 1 基本概念: Index(indices) 相当于 关系型数据库的 table, document 相当于关系型数据库的 row, 还有一个type的概念(可以理解为table的s ...