关于flag,都立下了

T1

考试的时候就觉得是贪心,但是不会反悔emm……

于是正解就是一个堆优化可反悔的贪心=。=

每次找前面最小的,于是是小根堆。

我们在交易的时候发现后面的一个可以更优。

于是可以发现$x_i-x_j+x_j-x_k=x_i-x_k$

这样就可以反悔,如果发现$k$可以更优,就把$j$退回去,

所以每次决策完,直接压堆或是更新,并把两个数一起放进去。

一个用来退货,另一个用来再买。

#include <iostream>
#include <cstring>
#include <cstdio>
#include <queue>
#define N 111111
#define LL long long using namespace std; priority_queue<int,vector<int>,greater<int> >q;
LL pn,arr[N],ans=0;
int main(){
scanf("%lld",&pn);
for(int i=1;i<=pn;i++)
scanf("%lld",arr+i);
for(int i=1;i<=pn;i++){
if(q.empty())q.push(arr[i]);
else if(q.top()<arr[i]){
ans+=arr[i]-q.top();
q.pop();
for(int j=0;j<2;j++)
q.push(arr[i]);
}
else q.push(arr[i]);
}
printf("%lld\n",ans);
}

T2

一个数学题,但是转换成莫队了。

打个样辉三角就可以知道这两个柿子。

$$\begin{align}
S_{n,m}=S_{n,m-1}+C_n^m \tag 1\\
S_{n,m}=S_{n-1,m} \times 2 - C_{n-1}^m \tag 2
\end{align}$$

我没写错吧

于是化为序列询问。

从$[m,n]$向$[m+1,n],[m-1,n],[m,n+1],[m,n-1]$移动。

#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>
#define N 111111
#define LL long long using namespace std; const int Mod=1e9+7;
struct Query{
int n,m;
int id;
}qs[N];
int qn;
LL ans[N],fac[N],inv[N];
int inp[N],pl; inline int get_part(int id){
return (id-1)/pl+1;
}
LL ppow(LL a,LL b){
LL res(1);
while(b){
if(b&1)res=res*a%Mod;
a=a*a%Mod;
b>>=1;
}
return res;
}
void prerun(){
pl=sqrt(100000)+1;
for(int i=0;i<=100000;i++)
inp[i]=get_part(i);
fac[0]=inv[0]=1;
for(int i=1;i<=100000;i++){
fac[i]=fac[i-1]*i%Mod;
inv[i]=ppow(fac[i],Mod-2);
}
}
LL C(int n,int m){
return fac[n]*inv[m]%Mod*inv[n-m]%Mod;
}
int main(){
// freopen("1.in","r",stdin);
// freopen("wa.out","w",stdout);
prerun();
scanf("%*d%d",&qn);
for(int i=1;i<=qn;i++){
scanf("%d%d",&qs[i].n,&qs[i].m);
qs[i].id=i;
}
sort(qs+1,qs+qn+1,[](const Query &x,const Query &y){return inp[x.n]<inp[y.n]||(inp[x.n]==inp[y.n]&&(inp[x.n]&1?x.m<y.m:x.m>y.m));});
int nn=1,nm=1;//S(0,0)
LL nans=2;
for(int i=1;i<=qn;i++){
while(nn<qs[i].n){
nans=(nans*2%Mod-C(nn,nm)+Mod)%Mod;
nn++;
}
while(nn>qs[i].n){
nans=(nans+C(nn-1,nm))%Mod*inv[2]%Mod;
nn--;
}
while(nm<qs[i].m){
nans+=C(nn,nm+1);
nans%=Mod;
nm++;
}
while(nm>qs[i].m){
nans-=C(nn,nm);
nans=(nans+Mod)%Mod;
nm--;
}
ans[qs[i].id]=nans%Mod;
}
for(int i=1;i<=qn;i++)
printf("%lld\n",ans[i]);
}

T3

考试的时候一直没看见边长至少有一个是$1$……

于是按$x,y$分别排序并建边,具体实现……没打完。

我想的是用两个$set$维护。

有人要部分代码么……啥都没有

/*CECECECECECECECE*/
#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>
#include <set>
#define N 111111 using namespace std;
struct XBLOCK{
int lx,ly,rx,ry;
int id;
XBLOCK(int a,int b,int c,int d,int e):lx(a),ly(b),rx(c),ry(d),id(e){}
friend operator < (const XBLOCK &a,const XBLOCK &b){
if(a.lx==b.lx)
return a.ly<b.ly;
return a.lx<b.lx;
}
};
struct YBLOCK{
int lx,ly,rx,ry;
int id;
YBLOCK(int a,int b,int c,int d,int e):lx(a),ly(b),rx(c),ry(d),id(e){}
friend operator < (const YBLOCK &a,const YBLOCK &b){
if(a.ly==b.ly)
return a.lx<b.lx;
return a.ly<b.ly;
}
};
set<XBLOCK>xb;
set<YBLOCK>yb;
int lines,cols,bn,qn;
int ans[N];
int pre[N];
int fa[N];
void prerun(){
for(int i=1;i<=bn;i++)
fa[i]=i;
}
int faind(int x){
if(x!=fa[x])fa[x]=faind(fa[x]);
return fa[x];
}
void unite(int a,int b){
a=faind(a);
b=faind(b);
fa[a]=b;
}
int main(){
int lx,ly,rx,ry,opt,qd;
scanf("%*d%d%d%d%d",&lines,&cols,&bn,&qn);
prerun();
for(int i=1;i<=bn;i++){
scanf("%d%d%d%d",&lx,&ly,&rx,&ry);
pre[lx-1]-=ry-ly+1;
pre[ly]+=ry-ly+1;
xb.insert(XBLOCK(lx,ly,rx,ry,i));
yb.insert(YBLOCK(lx,ly,rx,ry,i));
}
for(int i=1;i<=lines;i++)
pre[i]+=pre[i-1];
for(int i=1;i<=lines;i++)
pre[i]+=pre[i-1];
for(auto i:xb){
if(i.lx==1){
auto f=yb.lower_bound(i.lx,i.ly-1,-1,-1),
t=yb.lower_bound(i.rx+1,i.ly-1,-1,-1);
for(auto i=f;i!=t;i++){
i->id
}
continue;
}
auto xf=xb.lower_bound(XBLOCK(i.lx-1,i.ly,-1,-1)),
xt=xb.lower_bound(XBLOCK(i.lx-1,i.ry+1,-1,-1));
for(auto i=f;i!=t;i++){ }
auto yf=yb.lower_bound(YBLOCK()),
yt=yb.lower_bound(YBLOCK());
for(auto i=f;i!=t;i++){ }
}
for(int i=1;i<=qn;i++){
scanf("%d%d",&opt,&qd);
if(opt)
printf("%d\n",ans[qd]);
else
printf("%d\n",pre[qd]);
}
return 0;
}

1008-Redo的更多相关文章

  1. MySQL,MariaDB:Undo | Redo [转]

    本文是介绍MySQL数据库InnoDB存储引擎重做日志漫游 00 – Undo LogUndo Log 是为了实现事务的原子性,在MySQL数据库InnoDB存储引擎中,还用Undo Log来实现多版 ...

  2. iOS: 为画板App增加 Undo/Redo(撤销/重做)操作

    这个随笔的内容以上一个随笔为基础,(在iOS中实现一个简单的画板),上一个随笔实现了一个简单的画板:   今天我们要为这个画板增加Undo/Redo操作,当画错了一笔,可以撤销它,或者撤销之后后悔了, ...

  3. 【msql】关于redo 和 undo log

    InnoDB 有两块非常重要的日志,一个是undo log,另外一个是redo log,前者用来保证事务的原子性以及InnoDB的MVCC,后者用来保证事务的持久性.和大多数关系型数据库一样,Inno ...

  4. HDOJ 1008. Elevator 简单模拟水题

    Elevator Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Su ...

  5. [转]undo log与redo log原理分析

    数据库通常借助日志来实现事务,常见的有undo log.redo log,undo/redo log都能保证事务特性,这里主要是原子性和持久性,即事务相关的操作,要么全做,要么不做,并且修改的数据能得 ...

  6. [转]MySQL日志——Undo | Redo

    本文是介绍MySQL数据库InnoDB存储引擎重做日志漫游 00 – Undo LogUndo Log 是为了实现事务的原子性,在MySQL数据库InnoDB存储引擎中,还用Undo Log来实现多版 ...

  7. 【转】ORACLE的REDO与UNDO

    一.什么是redo?redo:oracle在在线或者归档重做日志文件中的记录的信息,外以出现失败时可以利用这些数据来"重放"事务.每个oracle数据都至少有二个在线重做日志组,每 ...

  8. BULK操作减少redo实验

    建表: create table sm_histable ( sm_id ), sm_subid ), service_type ), orgton ), orgnpi ), destton ), d ...

  9. 从Undo,Redo谈命令模式

    一般的应用软件中,通常会提供Redo和Undo的操作,比如Paint.NET中的动作面板,Word中的撤销重做,一般我们按Ctrl-Z即可回退到上次操作. 要实现上面的这一功能,最直观的想法就是,我们 ...

  10. Undo/Redo for Qt Tree Model

    Undo/Redo for Qt Tree Model eryar@163.com Abstract. Qt contains a set of item view classes that use ...

随机推荐

  1. 数据提取--JSON

    什么是数据提取? 简单的来说,数据提取就是从响应中获取我们想要的数据的过程 非结构化的数据:html等 结构化数据:json,xml等 处理方法:正则表达式.xpath 处理方法:转化为python数 ...

  2. TopCoder[SRM513 DIV 1]:PerfectMemory(500)

    Problem Statement      You might have played the game called Memoria. In this game, there is a board ...

  3. hdu多校第二场1011 (hdu6601) Keen On Everything But Triangle 主席树

    题意: 给定一个数列,每次询问一个区间,问这个区间中的值可组成的周长最大的三角形的周长. 题解: 定理1:给定一些值,这些值中组成边长最大的三角形的三条边的大小排名一定是连续的. 证明:假如第k大,第 ...

  4. 存储过程被程序和第三方客户端执行很慢,而sql server management studio执行速度正常

    来自:http://blog.csdn.net/pgbiao/article/details/22388945 原因分析:由于存储过程是预编译的, 在第一次执行的时候, 会生成执行计划, 以后执行的时 ...

  5. 从 i++ 和 ++i 说起局部变量表和操作数栈

    本文转载自:从 i++ 和 ++i 说起局部变量表和操作数栈 最近公司有人看了尚硅谷柴林燕老师的第一季面试题,就想来考考我.我觉得柴老师讲的很好,部分内容可以延伸一下,所以写这篇文章分享给大家! 这篇 ...

  6. SpringCloud学习笔记(七):Hystrix断路器

    概述 什么时候需要断路器?熔断? 举个简单的例子:小明喜欢小美,可是小美没有电话,小美给了小明家里的座机,小明打给座机,这个时候小美的妈妈接到了,小明怕妈妈知道自己喜欢小美,就跟小美妈妈说让小美哥接电 ...

  7. hexo next 主题 : 实现点击跳转到文章的时候文章的页面自动实现滚轮效果,向下滚动到阅读的位置。

    个人博客:https://mmmmmm.me 源码:https://github.com/dataiyangu/dataiyangu.github.io 背景: 博主的博客希望实现能够在点击到某个文章 ...

  8. tcp通信,解决断包、粘包的问题

    1.TCP和UDP的区别 TCP(transport control protocol,传输控制协议)是面向连接的,面向流的,提供高可靠性服务.收发两端(客户端和服务器端)都要有一一成对的socket ...

  9. SGLTE/SVLTE、CSFB、SRVCC概念

    SGLTE:Simultaneous GSM and LTE,手机可以同时驻留在GSM和LTE网络中,打电话通过GSM网络进行,数据业务通过LTE网络进行.​ SVLTE:Simultaneous V ...

  10. WebClient 上传文件 上传文件到服务器端

    一直对于上传文件到服务器端困惑:以前,现在,学到了关于WebClient的post知识 瞬间对于上传文件到服务器觉得好轻松: 原理很简单:我们通过post服务器的页面:把本地的文件直接传递过去: 现在 ...