本文主要介绍spark sql读写es、structured streaming写入es以及一些参数的配置

ES官方提供了对spark的支持,可以直接通过spark读写es,具体可以参考ES Spark Support文档(文末有地址)。

以下是pom依赖,具体版本可以根据自己的es和spark版本进行选择:

<dependency>
<groupId>org.elasticsearch</groupId>
<artifactId>elasticsearch-spark-20_2.11</artifactId>
<version>6.0.0</version>
</dependency>

Spark SQL - ES

主要提供了两种读写方式:一种是通过DataFrameReader/Writer传入ES Source实现;另一种是直接读写DataFrame实现。在实现前,还要列一些相关的配置:

配置

参数 描述
es.nodes.wan.only true or false,在此模式下,连接器禁用发现,并且所有操作通过声明的es.nodes连接
es.nodes ES节点
es.port ES端口
es.index.auto.create true or false,是否自动创建index
es.resource 资源路径
es.mapping.id es会为每个文档分配一个全局id。如果不指定此参数将随机生成;如果指定的话按指定的来
es.batch.size.bytes es批量API的批量写入的大小(以字节为单位)
es.batch.write.refresh 批量更新完成后是否调用索引刷新
es.read.field.as.array.include 读es的时候,指定将哪些字段作为数组类型

列了一些常用的配置,更多配置查看ES Spark Configuration文档

DataFrameReader读ES

import org.elasticsearch.spark.sql._
val options = Map(
"es.nodes.wan.only" -> "true",
"es.nodes" -> "29.29.29.29:10008,29.29.29.29:10009",
"es.port" -> "9200",
"es.read.field.as.array.include" -> "arr1, arr2"
)
val df = spark
.read
.format("es")
.options(options)
.load("index1/info")
df.show()

DataFrameWriter写ES

import org.elasticsearch.spark.sql._
val options = Map(
"es.index.auto.create" -> "true",
"es.nodes.wan.only" -> "true",
"es.nodes" -> "29.29.29.29:10008,29.29.29.29:10009",
"es.port" -> "9200",
"es.mapping.id" -> "id"
) val sourceDF = spark.table("hive_table")
sourceDF
.write
.format("org.elasticsearch.spark.sql")
.options(options)
.mode(SaveMode.Append)
.save("hive_table/docs")

读DataFrame

jar包中提供了esDF()方法可以直接读es数据为DataFrame,以下是源码截图。



简单说一下各个参数:

resource:资源路径,例如hive_table/docs

cfg:一些es的配置,和上面代码中的options差不多

query:指定DSL查询语句来过滤要读的数据,例如"?q=user_group_id:3"表示读user_group_id为3的数据

val options = Map(
"pushdown" -> "true",
"es.nodes.wan.only" -> "true",
"es.nodes" -> "29.29.29.29:10008,29.29.29.29:10009",
"es.port" -> "9200"
) val df = spark.esDF("hive_table/docs", "?q=user_group_id:3", options)
df.show()

写DataFrame

jar包中提供了saveToEs()方法可以将DataFrame写入ES,以下是源码截图。



resource:资源路径,例如hive_table/docs

cfg:一些es的配置,和上面代码中的options差不多

import org.elasticsearch.spark.sql._
val options = Map(
"es.index.auto.create" -> "true",
"es.nodes.wan.only" -> "true",
"es.nodes" -> "29.29.29.29:10008,29.29.29.29:10009",
"es.port" -> "9200",
"es.mapping.id" -> "zip_record_id"
)
val df = spark.table("hive_table")
df.saveToEs("hive_table/docs", options)

Structured Streaming - ES

es也提供了对Structured Streaming的集成,使用Structured Streaming可以实时的写入ES。

import org.elasticsearch.spark.sql._
val options = Map(
"es.index.auto.create" -> "true",
"es.nodes.wan.only" -> "true",
"es.nodes" -> "29.29.29.29:10008,29.29.29.29:10009",
"es.port" -> "9200",
"es.mapping.id" -> "zip_record_id"
)
val df = spark
.readStream
.format("kafka")
.option("kafka.bootstrap.servers", "a:9092,b:9092,c:9092")
.option("subscribe", "test")
.option("failOnDataLoss", "false")
.load()
df
.writeStream
.outputMode(OutputMode.Append())
.format("es")
.option("checkpointLocation", s"hdfs://hadoop:8020/checkpoint/test01")
.options(options)
.start("test_streaming/docs")
.awaitTermination()

可能遇到的问题

数组类型转换错误

报错信息:type (scala.collection.convert.Wrappers.JListWrapper) cannot be converted to the string type

因为es的mapping只会记录字段的类型,不会记录是否是数组,也就是说如果是int数组,es的mapping只是记录成int。

可以在option中加一个es.read.field.as.array.include,标明数组字段

es.read.field.as.array.include" -> "数组字段的名字"

如果是object里的某个字段,写成"object名字.数组字段名字",如果是多个字段,字段名之间用逗号分隔

Timestamp被转为Long

DataFrame的Timestamp类型数据写入ES后,就变成了Number类型。

这可能不算个问题,时间戳本质上就是Long类型的毫秒值;但是在Hive中Timestamp是"yyyy-MM-dd HH:mm:ss"的类型,个人觉得很别扭。

尝试将Timestamp类型字段转成Date类型,写入ES后还是Number类型。网上搜了一圈也没有什么好的办法,大家有什么解决办法欢迎交流。

References

ES Spark Support文档:https://www.elastic.co/guide/en/elasticsearch/hadoop/current/spark.html#spark

ES Spark Configuration: https://www.elastic.co/guide/en/elasticsearch/hadoop/current/configuration.html

end.




个人公众号:码农峰,定时推送行业资讯,持续发布原创技术文章,欢迎大家关注。

Spark读写ES的更多相关文章

  1. Spark 读写hive 表

    spark 读写hive表主要是通过sparkssSession 读表的时候,很简单,直接像写sql一样sparkSession.sql("select * from xx") 就 ...

  2. Spark读写HBase

    Spark读写HBase示例 1.HBase shell查看表结构 hbase(main)::> desc 'SDAS_Person' Table SDAS_Person is ENABLED ...

  3. 使用Spark读写CSV格式文件(转)

    原文链接:使用Spark读写CSV格式文件 CSV格式的文件也称为逗号分隔值(Comma-Separated Values,CSV,有时也称为字符分隔值,因为分隔字符也可以不是逗号.在本文中的CSV格 ...

  4. spark读写mysql

    spark读写mysql除官网例子外还要指定驱动名称 travels.write .mode(SaveMode.Overwrite) .format("jdbc") .option ...

  5. Spark读写Hbase的二种方式对比

    作者:Syn良子 出处:http://www.cnblogs.com/cssdongl 转载请注明出处 一.传统方式 这种方式就是常用的TableInputFormat和TableOutputForm ...

  6. spark on es 多索引查询

    核心接口 trait SparkOnEsService { val conf = new SparkConf // conf.setMaster("local[10]") val ...

  7. spark读写Sequoiadb

    spark如何读写Sequoiadb,最近被客户问多了,这个记录下. Spark读Sequoiadb数据: package marketing import com.sequoiadb.hadoop. ...

  8. Spark读写Hbase中的数据

    def main(args: Array[String]) { val sparkConf = new SparkConf().setMaster("local").setAppN ...

  9. spark读写hbase性能对比

    一.spark写入hbase hbase client以put方式封装数据,并支持逐条或批量插入.spark中内置saveAsHadoopDataset和saveAsNewAPIHadoopDatas ...

随机推荐

  1. 2018-8-10-WPF-好看的矢量图标

    title author date CreateTime categories WPF 好看的矢量图标 lindexi 2018-08-10 19:16:53 +0800 2018-5-16 11:4 ...

  2. angular 点击事件阻止冒泡及默认行为

    经常遇到场景:多层级元素绑定ng-click 事件,则底层元素的点击事件存在冒泡现象,怎么解决? 类似原生JS ,只是语法稍有不同,如下: 阻止冒泡 $event.stopPropagation() ...

  3. H3C 路由表查找规则(3)

  4. 【js】React-Native 初始化时报错

    一.按照官网的步骤一步一步的操作,到最后  react-native init AwesomeProject  时就是报错 报错信息如下图 然后我下载了这个模块  npm install prompt ...

  5. P1046 阶乘

    题目描述 给你一个数N,求 \(N!\) (即:N的阶乘).\(N! = N \times (N-1) \times \dots \times 2 \times 1\) 输入格式 输入一个整数 \(N ...

  6. P1005 等边字符三角形

    题目描述 给定一个字符串,用它构造一个底边长5个字符,高3个字符的等腰字符三角形. 三角形的形状见样例输出. 输入格式 无. 输出格式 输出样例输出中所描述的等腰字符三角形. 样例输入 无. 样例输出 ...

  7. dotnet core 通过 frp 发布自己的网站

    很多时候写出来的网站只能自己内网访问,本文告诉大家如何通过 Frp 将自己的 asp dotnet core 网站发布到外网,让小伙伴访问自己的网站 通过 frp 的方式,可以解决自己的服务器性能太差 ...

  8. 【codeforces 749B】Parallelogram is Back

    time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...

  9. 相似文本文档分析之SimHash算法

    Simhash算法: Simhash算法由Google的Charikar提出,是将一篇文档转化为n位的签名,通过比较签名的相似度来计算原文档的相似度.签名越相近,则文档越相近.因此,整个过程就不会涉及 ...

  10. deep Q learning小笔记

    1.loss 是什么 2. Q-Table的更新问题变成一个函数拟合问题,相近的状态得到相近的输出动作.如下式,通过更新参数 θθ 使Q函数逼近最优Q值 深度神经网络可以自动提取复杂特征,因此,面对高 ...