洛谷P1233 木棍加工题解 LIS
突然发现自己把原来学的LIS都忘完了,正好碰见这一道题。|-_-|
\(LIS\),也就是最长上升子序列,也就是序列中元素严格单调递增,这个东西有\(n^{2}\)和\(nlog_{2}n\)两种算法,其原理我就不多说了。
注意,本题的一个要点,就是不下降连续子序列的个数等于最长上升子序列的长度。
证明?由Dilworth定理可得证。
什么是Dilworth定理?它的定义是在:有穷偏序集中,任何反链最大元素数目等于任何将集合到链的划分中链的最小数目。一个关于无限偏序集的理论指出,在此种情况下,一个偏序集具有有限的宽度w,当且仅当它可以划分为最少w条链。
懵逼了吗?好吧,这是它的通俗解释:就是不下降连续子序列的个数等于最长上升子序列的长度。
Dilworth定理的证明?反正我是不会,问度娘去吧。
还有,在本题中,因为有两个变量,我们只需要先按其中一个(我是按的l)作为关键字排序,然后对排序后的序列求LIS长度就行了。
其余的东西看代码吧:
#include <iostream>
#include <algorithm>
using namespace std;
int n, d[5005];
struct S{ //stick
int l, w;
}s[5005];
int main() {
ios_base::sync_with_stdio(false);
cin.tie(0);
cin >> n;
for(int i = 1; i <= n; i++) cin >> s[i].l >> s[i].w;
sort(s+1, s+n+1, [](const S& a, const S& b) { \\c++11 lamda表达式
return a.l > b.l;
});
d[1] = s[1].w;
int len = 1;
for(int i = 2; i <= n; i++) {
if(d[len] < s[i].w) d[++len] = s[i].w;
else {
int p = lower_bound(d+1, d+len+1, s[i].w)-d; \\STL中的二分查找
d[p] = s[i].w;
}
}
cout << len;
return 0;
}
洛谷P1233 木棍加工题解 LIS的更多相关文章
- 洛谷 P1233 木棍加工 题解
题面 Dilworth定理:在数学理论中的序理论与组合数学中,Dilworth定理根据序列划分的最小数量的链描述了任何有限偏序集的宽度. 反链是一种偏序集,其任意两个元素不可比:而链则是一种任意两个元 ...
- 洛谷 P1233 木棍加工 解题报告
P1233 木棍加工 题目描述 一堆木头棍子共有n根,每根棍子的长度和宽度都是已知的.棍子可以被一台机器一个接一个地加工.机器处理一根棍子之前需要准备时间.准备时间是这样定义的: 第一根棍子的准备时间 ...
- 洛谷P1233 木棍加工【单调栈】
题目:https://www.luogu.org/problemnew/show/P1233 题意: 有n根木棍,每根木棍有长度和宽度. 现在要求按某种顺序加工木棍,如果前一根木棍的长度和宽度都大于现 ...
- 洛谷 P1233 木棍加工
题目描述 一堆木头棍子共有n根,每根棍子的长度和宽度都是已知的.棍子可以被一台机器一个接一个地加工.机器处理一根棍子之前需要准备时间.准备时间是这样定义的: 第一根棍子的准备时间为1分钟: 如果刚处理 ...
- 洛谷P1233 [木棍加工]
主要思路: 这道题一眼看过去就可以贪心.. 首先可以按L排序.. 显然排序之后我们就可以抛开L不管了.. 然后就可以愉快的贪心了.. 细节: 这道题可以看成用 最少的合法序列(详见原题) 装下所有木棍 ...
- P1233 木棍加工 dp LIS
题目描述 一堆木头棍子共有n根,每根棍子的长度和宽度都是已知的.棍子可以被一台机器一个接一个地加工.机器处理一根棍子之前需要准备时间.准备时间是这样定义的: 第一根棍子的准备时间为1分钟: 如果刚处理 ...
- 洛谷P1020 导弹拦截 题解 LIS扩展题 Dilworth定理
题目链接:https://www.luogu.com.cn/problem/P1020 题目大意: 给你一串数,求: 这串数的最长不上升子序列的长度: 最少划分成多少个子序列是的这些子序列都是不上升子 ...
- 「洛谷P1233」木棍加工 解题报告
P1233 木棍加工 题目描述 一堆木头棍子共有n根,每根棍子的长度和宽度都是已知的.棍子可以被一台机器一个接一个地加工.机器处理一根棍子之前需要准备时间.准备时间是这样定义的: 第一根棍子的准备时间 ...
- 洛谷P2832 行路难 分析+题解代码【玄学最短路】
洛谷P2832 行路难 分析+题解代码[玄学最短路] 题目背景: 小X来到了山区,领略山林之乐.在他乐以忘忧之时,他突然发现,开学迫在眉睫 题目描述: 山区有n座山.山之间有m条羊肠小道,每条连接两座 ...
随机推荐
- lnmp环境里安装mssql及mssql的php扩展
小活中用到mssql,于是在自己lnmp环境中安装各mssql数据库 步骤如下: 源码编译安装 (1)下载freetds-stable-0.91源码:http://download.csdn.net/ ...
- Linux内核高端内存
Linux内核地址映射模型 x86 CPU采用了段页式地址映射模型.进程代码中的地址为逻辑地址,经过段页式地址映射后,才真正访问物理内存. 段页式机制如下图. Linux内核地址空间划分 通常32位L ...
- iOS 防止离屏渲染为 image 添加圆角
// image 分类 - (UIImage *)circleImage{ // NO 代表透明 UIGraphicsBeginImageContextWithOptions(self.siz ...
- Cs231n课堂内容记录-Lecture 7 神经网络训练2
Lecture 7 Training Neural Networks 2 课堂笔记参见:https://zhuanlan.zhihu.com/p/21560667?refer=intelligent ...
- window.open模拟表单POST提交
解决地址栏长度限制,隐藏参数,不在地址栏显示 项目 excel 导出中用到 将form的target设置成和open的name参数一样的值,通过浏览器自动识别实现了将内容post到新窗口中 var u ...
- Linux Mysql 每天定时备份
1.创建脚本 dbback.sh,内容如下: #!/bin/bash mysqldump -uroot -p123456 hexin>/work/db_back/hexin_$(date +%Y ...
- IDEA包名显示设置
项目结构视图右上角那个齿轮 选择[Compact Empty Middle Packages],包会合并显示 [Hide Empty Middle Packages]去掉前面的√,不分层级显示
- iowait 过高问题的查找及解决linux
Linux 有许多可用来查找问题的简单工具,也有许多是更高级的 I/O Wait 就是一个需要使用高级的工具来debug的问题,当然也有许多基本工具的高级用法.I/O wait的问题难以定位的原因是因 ...
- springmvc中的类型转换器
在使用springmvc时可能使用@RequestParam注解或者@RequestBody注解,他们的作用是把请求体中的参数取出来,给方法的参数绑定值. 假如方法的参数是自定义类型,就要用到类型转换 ...
- SpringBoot四大核心
auto-configuration.starters.cli.actuator