设 $f\in C[0,+\infty)$, $a$ 为实数, 且存在有限极限 $$\bex \vlm{x}\sez{f(x)+a\int_0^x f(t)\rd t}. \eex$$ 证明; $f(+\infty)=0$.

证明: 记 $$\bex F(x)=e^{ax}\int_0^x f(t)\rd t, \eex$$ 则 $$\bex F'(x)=e^{ax}\sez{f(x)+a\int_0^x f(t)\rd t}, \eex$$ $$\bex \vlm{x}\cfrac{F'(x)}{ae^{ax}}=\cfrac{1}{a}\vlm{x} \sez{f(x)+a\int_0^x f(t)\rd t} \eex$$ 存在. 由 L'Hospital 法则, $$\bex \vlm{x}\int_0^x f(t)\rd t =\vlm{x}\cfrac{F(x)}{e^{ax}} =\vlm{x}\cfrac{F'(x)}{ae^{ax}} \eex$$ 存在. 故 $$\bex \vlm{x}f(x)=\vlm{x}\sez{f(x)+a\int_0^x f(t)\rd t} -a\vlm{x}\int_0^x f(t)\rd t \eex$$ 存在. 由 $$\bex \vlm{x}\int_0^x f(t)\rd t \eex$$ 存在即知 $f(+\infty)=0$ (否则, $f(+\infty)=A\neq 0$. 不妨设 $A>0$, 而 $$\bex \exists\ X>0,\st x\geq X\ra f(x)\geq \cfrac{A}{2}, \eex$$ $$\beex \bea \int_0^x f(t)\rd t &=\int_0^Xf(t)\rd t+\int_X^x f(t)\rd t\quad(x\geq X)\\ &\geq \int_0^Xf(t)\rd t+\cfrac{A}{2} (x-X)\\ &\to \infty\quad (x\to\infty). \eea \eeex$$ 这是一个矛盾).

[再寄小读者之数学篇](2014-06-20 求极限-L'Hospital 法则的应用)的更多相关文章

  1. [再寄小读者之数学篇](2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合)

    (2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合) 设 ${\bf A},{\bf B}$ 都是反对称矩阵, 且 ${\b ...

  2. [再寄小读者之数学篇](2014-06-22 求导数 [中国科学技术大学2014年高等数学B考研试题])

    设 $f(x)=x^2\ln(x+1)$, 求 $f^{(n)}(0)$. 解答: 利用 Leibniz 公式易知 $f'(0)=f''(0)=0$, $f^{(n)}(0)=(-1)^{n-3} n ...

  3. [再寄小读者之数学篇](2014-06-26 Logarithmical Sobolev inequality using BMO space)

    $$\bex q>3\ra \sen{\n f}_{L^\infty} \leq C(q)\sez{ 1+\sen{\n f}_{BMO} \ln^\frac{1}{2}\sex{e+\sen{ ...

  4. [再寄小读者之数学篇](2014-06-26 Besov space estimates)

    (1) $$\bex \sen{D^k f}_{\dot B^s_{p,q}}\sim \sen{f}_{\dot B^{s+k}_{p,q}}. \eex$$ (2) $$\beex \bea &a ...

  5. [再寄小读者之数学篇](2014-06-23 Bernstein's inequality)

    $$\bex \supp \hat u\subset \sed{2^{j-2}\leq |\xi|\leq 2^j} \ra \cfrac{1}{C}2^{jk}\sen{f}_{L^p} \leq ...

  6. [再寄小读者之数学篇](2014-06-21 Beal-Kaot-Majda type logarithmic Sobolev inequality)

    For $f\in H^s(\bbR^3)$ with $s>\cfrac{3}{2}$, we have $$\bex \sen{f}_{L^\infty}\leq C\sex{1+\sen{ ...

  7. [再寄小读者之数学篇](2014-06-20 求极限-H\"older 不等式的应用)

    设非负严格增加函数 $f$ 在区间 $[a,b]$ 上连续, 有积分中值定理, 对于每个 $p>0$ 存在唯一的 $x_p\in (a,b)$, 使 $$\bex f^p(x_p)=\cfrac ...

  8. [再寄小读者之数学篇](2014-04-08 from 1297503521@qq.com $\sin x-x\cos x=0$ 的根的估计)

    (2014-04-08 from 1297503521@qq.com) 设方程 $\sin x-x\cos x=0$ 在 $(0,+\infty)$ 中的第 $n$ 个解为 $x_n$. 证明: $$ ...

  9. [再寄小读者之数学篇](2014-12-04 $\left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0.$)

    试证: $$\bex \left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0. \eex$$ 证明 (from Hanssch ...

  10. [再寄小读者之数学篇](2014-11-26 广义 Schur 分解定理)

    设 $A,B\in \bbR^{n\times n}$ 的特征值都是实数, 则存在正交阵 $P,Q$ 使得 $PAQ$, $PBQ$ 为上三角阵.

随机推荐

  1. Django【跨域】

    jsonp 方式一:指定返回方法 # 后端 def view(request): callback = request.GET.get('callback') return HttpResponse( ...

  2. 回去试idea

    https://blog.csdn.net/s_eal/article/details/81486472?utm_source=blogxgwz0

  3. Configuring Apache Kafka for Performance and Resource Management

    Apache Kafka is optimized for small messages. According to benchmarks, the best performance occurs w ...

  4. springboot中配置过滤器以及可能出现的问题

    在springboot添加过滤器有两种方式: 1.通过创建FilterRegistrationBean的方式(建议使用此种方式,统一管理,且通过注解的方式若不是本地调试,如果在filter中需要增加c ...

  5. R语言学习——数据框

    > #数据框可以包含不同模式(数值型.字符型.逻辑型等)的数据,是R中最常处理的数据结构.数据框可以通过函数data.frame()创建:mydata<-data.frame(coll,c ...

  6. scipy.stats.multivariate_normal的使用

    参考:https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.multivariate_normal.html ...

  7. Strem_01

    import 'package:flutter/material.dart';import 'dart:async';import 'dart:ui'; void main()=>runApp( ...

  8. postman的使用大全

    转载 https://blog.csdn.net/fxbin123/article/details/80428216

  9. Go语言中的string知识点

    1.Go语言String的本质就是一个[]byte,所以他们之间可以互相转换,byte数组的长度就是字符串的长度. func StringTest1() { str := "Hello,Wo ...

  10. 【XSY3147】子集计数 DFT 组合数学

    题目大意 给定一个集合 \(\{1,2,\ldots,n\}\),要求你从中选出 \(m\) 个数,且这 \(m\) 个数的和是 \(k\).问方案数 \(\bmod 998244353\) \(0\ ...