洛谷 P3366 【模板】最小生成树
题目链接
https://www.luogu.org/problemnew/show/P3366
题目描述
如题,给出一个无向图,求出最小生成树,如果该图不连通,则输出orz
输入输出格式
输入格式:
第一行包含两个整数N、M,表示该图共有N个结点和M条无向边。(N<=5000,M<=200000)
接下来M行每行包含三个整数Xi、Yi、Zi,表示有一条长度为Zi的无向边连接结点Xi、Yi
输出格式:
输出包含一个数,即最小生成树的各边的长度之和;如果该图不连通则输出orz
输入输出样例
4 5
1 2 2
1 3 2
1 4 3
2 3 4
3 4 3
7
说明
时空限制:1000ms,128M
数据规模:
对于20%的数据:N<=5,M<=20
对于40%的数据:N<=50,M<=2500
对于70%的数据:N<=500,M<=10000
对于100%的数据:N<=5000,M<=200000
样例解释:
所以最小生成树的总边权为2+2+3=7
解题思路
很显然这是求一个图的最小生成树,有关最小生成树的基础知识不懂的请看我的另一篇博客:https://www.cnblogs.com/yinyuqin/p/10779387.html
在这里,我们讲的是Kruskal算法。
它的优点有哪些?
- 不需要建图
- 相对于prim算法更加灵活
主要思路:
首先,将每一条边存入结构体中,然后将边按照权值从小到大排序,然后依次枚举每一条边,若连接的两个端点不连通则加入最小生成树中。这样就保证了先加入的边一定是权值最小的边。
怎样实现这一个过程呢?
我们要用到并查集来维护。用并查集来判断每一条边连的两个端点是否联通,如果不是,就将这两个集合合并起来,这样就快速地构建了最小生成树。
这个题还有一个点就是判断图是否联通,在这里只需要判断最后的最小生成树中是否只有n-1条边即可。因为n个点的树有n-1条边。数据太水,不用判断也能AC!
下面附上代码。
#include<iostream>
#include<algorithm> //sort的头文件
using namespace std;
struct edge{ //结构体来存每一条边
int qidian;
int zhongdian;
int zhi;
}bian[];
int n,m,cnt,ans,fa[];//cnt记录共有几条边,ans为最小生成树的边权和
bool cmp(edge a,edge b){ //sort的比较函数(因为是结构体)
return a.zhi<b.zhi;
}
int find(int x){ //并查集找到x的祖先
if(fa[x]==x) return x;
return fa[x]=find(fa[x]);//路径压缩
}
int main()
{
cin>>n>>m;
for(int i=;i<=n;i++) fa[i]=i; //并查集:先将每一个点的祖先定为自己
for(int i=;i<=m;i++){
cin>>bian[i].qidian>>bian[i].zhongdian>>bian[i].zhi;
}
sort(bian+,bian+m+,cmp); //有小到大排序
for(int i=;i<=m;i++){
int p1=bian[i].qidian;
int p2=bian[i].zhongdian;
int f1=find(p1); //分别找到起点和终点的祖先
int f2=find(p2);
if(f1!=f2){ //判断起点终点是否联通
cnt++; //如果未联通,就将这条边加入最小生成树
ans+=bian[i].zhi;
fa[f1]=f2; //将这两个点连起来
}
}
if(cnt!=n-){ //cnt!=1时这个图不是连通图
cout<<"orz"<<endl;
return ;
}
cout<<ans;
return ;
}
AC代码
洛谷 P3366 【模板】最小生成树的更多相关文章
- [洛谷P3366] [模板] 最小生成树
存个模板,顺便复习一下kruskal和prim. 题目传送门 kruskal 稀疏图上表现更优. 设点数为n,边数为m. 复杂度:O(mlogm). 先对所有边按照边权排序,初始化并查集的信息. 然后 ...
- 最小生成树 & 洛谷P3366【模板】最小生成树 & 洛谷P2820 局域网
嗯... 理解生成树的概念: 在一幅图中将所有n个点连接起来的n-1条边所形成的树. 最小生成树: 边权之和最小的生成树. 最小瓶颈生成树: 对于带权图,最大权值最小的生成树. 如何操作? 1.Pri ...
- 洛谷P3366【模板】最小生成树-克鲁斯卡尔Kruskal算法详解附赠习题
链接 题目描述 如题,给出一个无向图,求出最小生成树,如果该图不连通,则输出orz 输入输出格式 输入格式: 第一行包含两个整数N.M,表示该图共有N个结点和M条无向边.(N<=5000,M&l ...
- 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)
To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...
- 洛谷P3375 [模板]KMP字符串匹配
To 洛谷.3375 KMP字符串匹配 题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.如果 ...
- LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)
为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...
- 【AC自动机】洛谷三道模板题
[题目链接] https://www.luogu.org/problem/P3808 [题意] 给定n个模式串和1个文本串,求有多少个模式串在文本串里出现过. [题解] 不再介绍基础知识了,就是裸的模 ...
- 洛谷-P5357-【模板】AC自动机(二次加强版)
题目传送门 -------------------------------------- 过年在家无聊补一下这周做的几道AC自动机的模板题 sol:AC自动机,还是要解决跳fail边产生的重复访问,但 ...
- 洛谷.1919.[模板]A*B Problem升级版(FFT)
题目链接:洛谷.BZOJ2179 //将乘数拆成 a0*10^n + a1*10^(n-1) + ... + a_n-1的形式 //可以发现多项式乘法就模拟了竖式乘法 所以用FFT即可 注意处理进位 ...
- 洛谷.3803.[模板]多项式乘法(FFT)
题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #inclu ...
随机推荐
- Django_ORM操作 - 查询
ORM 操作 必知必会13条 <1> all(): 查询所有结果 <2> filter(**kwargs): 它包含了与所给筛选条件相匹配的对象 <3> get(* ...
- Linux keepalived+nginx实现主从模式
双机高可用方法目前分为两种: 主从模式:一台主服务器和一台从服务器,当配置了虚拟vip的主服务器发送故障时,从服务器将自动接管虚拟ip,服务将不会中断.但主服务器不出现故障的时候,从服务器永远处于浪费 ...
- IAR使用跳转功能时不正常的情况
@2019-04-12 [小记] [使用环境]IAR-Arm8.30.1 [验证] 均为实测 1. 出现如下图这种情况应该是工程所在路径太深导致 2. 如果不弹出上图警告,但还是不跳转应该是工程编译信 ...
- 内网MySQL YUM源记录
#mysql yum */180 * * * * rsync -av --delete rsync://mirrors.tuna.tsinghua.edu.cn/mysql/yum/mysql-con ...
- [NOIP2017] 列队(平衡树)
考虑转化题意: 设这次操作删掉点\((x, y)\) 对于每一次向左看齐:在第x行删除\((x, y)\),并将y以后的点全部前移一位 对于每一次向前看齐:x以后的点全部上移一位,并在最后一列插入\( ...
- 【洛谷P4555】最长双回文串
题目大意:给定一个长度为 N 的字符串 S,求 S 的最长双回文子串的长度,双回文子串定义为是 S 的一个子串,可以分成两个互不相交的回文子串. 题解:利用回文自动机 len 数组的性质,即:len ...
- iOS程序员 如何做到升职加薪,5年 开发经验 码农 笔记送给你!
前言: 对于我们绝大多数人来说,工作最基本的意义是我们可以通过自己的劳动换取酬劳来养活自己,尤其是对于刚毕业的学生,拥有一份全日制的工作意味着自己走出校园,踏上社会,自己真正开始独立起来. 在养活自己 ...
- boto3库限速
# -*- coding: utf-8 -*- import boto3 from boto3.s3.transfer import TransferConfig # from s3transfer. ...
- Windows系统CMD下常用命令
命令 功能ASSOC 显示或修改文件扩展名关联.ATTRIB 显示或更改文件属性.BREAK 设置或清除扩展式 CTRL+C 检查.BCDEDIT 设置启动数据库中的属性 ...
- VMware 安装虚拟机系统
Ø 简介 本文主要介绍使用 VMware 安装虚拟机系统. 1. 创建虚拟机 1) 打开VMware,创建新虚拟机 2) 选择需要安装系统的iso镜像文件 3) 选择需要安装的Win ...