题目链接

https://www.luogu.org/problemnew/show/P3366

题目描述

如题,给出一个无向图,求出最小生成树,如果该图不连通,则输出orz

输入输出格式

输入格式:

第一行包含两个整数N、M,表示该图共有N个结点和M条无向边。(N<=5000,M<=200000)

接下来M行每行包含三个整数Xi、Yi、Zi,表示有一条长度为Zi的无向边连接结点Xi、Yi

输出格式:

输出包含一个数,即最小生成树的各边的长度之和;如果该图不连通则输出orz

输入输出样例

输入样例:

4 5
1 2 2
1 3 2
1 4 3
2 3 4
3 4 3
输出样例:

7

说明

时空限制:1000ms,128M

数据规模:

对于20%的数据:N<=5,M<=20

对于40%的数据:N<=50,M<=2500

对于70%的数据:N<=500,M<=10000

对于100%的数据:N<=5000,M<=200000

样例解释:

所以最小生成树的总边权为2+2+3=7

解题思路

很显然这是求一个图的最小生成树,有关最小生成树的基础知识不懂的请看我的另一篇博客:https://www.cnblogs.com/yinyuqin/p/10779387.html

在这里,我们讲的是Kruskal算法

它的优点有哪些?

  • 不需要建图
  • 相对于prim算法更加灵活

主要思路:

首先,将每一条边存入结构体中,然后将边按照权值从小到大排序,然后依次枚举每一条边,若连接的两个端点不连通则加入最小生成树中。这样就保证了先加入的边一定是权值最小的边。

怎样实现这一个过程呢?

我们要用到并查集来维护。用并查集来判断每一条边连的两个端点是否联通,如果不是,就将这两个集合合并起来,这样就快速地构建了最小生成树。

这个题还有一个点就是判断图是否联通,在这里只需要判断最后的最小生成树中是否只有n-1条边即可。因为n个点的树有n-1条边。数据太水,不用判断也能AC!

下面附上代码。

 #include<iostream>
#include<algorithm> //sort的头文件
using namespace std;
struct edge{ //结构体来存每一条边
int qidian;
int zhongdian;
int zhi;
}bian[];
int n,m,cnt,ans,fa[];//cnt记录共有几条边,ans为最小生成树的边权和
bool cmp(edge a,edge b){ //sort的比较函数(因为是结构体)
return a.zhi<b.zhi;
}
int find(int x){ //并查集找到x的祖先
if(fa[x]==x) return x;
return fa[x]=find(fa[x]);//路径压缩
}
int main()
{
cin>>n>>m;
for(int i=;i<=n;i++) fa[i]=i; //并查集:先将每一个点的祖先定为自己
for(int i=;i<=m;i++){
cin>>bian[i].qidian>>bian[i].zhongdian>>bian[i].zhi;
}
sort(bian+,bian+m+,cmp); //有小到大排序
for(int i=;i<=m;i++){
int p1=bian[i].qidian;
int p2=bian[i].zhongdian;
int f1=find(p1); //分别找到起点和终点的祖先
int f2=find(p2);
if(f1!=f2){ //判断起点终点是否联通
cnt++; //如果未联通,就将这条边加入最小生成树
ans+=bian[i].zhi;
fa[f1]=f2; //将这两个点连起来
}
}
if(cnt!=n-){ //cnt!=1时这个图不是连通图
cout<<"orz"<<endl;
return ;
}
cout<<ans;
return ;
}

AC代码

洛谷 P3366 【模板】最小生成树的更多相关文章

  1. [洛谷P3366] [模板] 最小生成树

    存个模板,顺便复习一下kruskal和prim. 题目传送门 kruskal 稀疏图上表现更优. 设点数为n,边数为m. 复杂度:O(mlogm). 先对所有边按照边权排序,初始化并查集的信息. 然后 ...

  2. 最小生成树 & 洛谷P3366【模板】最小生成树 & 洛谷P2820 局域网

    嗯... 理解生成树的概念: 在一幅图中将所有n个点连接起来的n-1条边所形成的树. 最小生成树: 边权之和最小的生成树. 最小瓶颈生成树: 对于带权图,最大权值最小的生成树. 如何操作? 1.Pri ...

  3. 洛谷P3366【模板】最小生成树-克鲁斯卡尔Kruskal算法详解附赠习题

    链接 题目描述 如题,给出一个无向图,求出最小生成树,如果该图不连通,则输出orz 输入输出格式 输入格式: 第一行包含两个整数N.M,表示该图共有N个结点和M条无向边.(N<=5000,M&l ...

  4. 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)

    To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...

  5. 洛谷P3375 [模板]KMP字符串匹配

    To 洛谷.3375 KMP字符串匹配 题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.如果 ...

  6. LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)

    为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...

  7. 【AC自动机】洛谷三道模板题

    [题目链接] https://www.luogu.org/problem/P3808 [题意] 给定n个模式串和1个文本串,求有多少个模式串在文本串里出现过. [题解] 不再介绍基础知识了,就是裸的模 ...

  8. 洛谷-P5357-【模板】AC自动机(二次加强版)

    题目传送门 -------------------------------------- 过年在家无聊补一下这周做的几道AC自动机的模板题 sol:AC自动机,还是要解决跳fail边产生的重复访问,但 ...

  9. 洛谷.1919.[模板]A*B Problem升级版(FFT)

    题目链接:洛谷.BZOJ2179 //将乘数拆成 a0*10^n + a1*10^(n-1) + ... + a_n-1的形式 //可以发现多项式乘法就模拟了竖式乘法 所以用FFT即可 注意处理进位 ...

  10. 洛谷.3803.[模板]多项式乘法(FFT)

    题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #inclu ...

随机推荐

  1. vscode笔记(一)- vscode自动生成文件头部注释和函数注释

    VsCode 自动生成文件头部注释和函数注释 作者:狐狸家的鱼 本文链接:vscode自动生成文件头部注释和函数注释 GitHub:sueRimn 1.安装插件KoroFileHeader 2.设置 ...

  2. 让pip使用python3而不是python2

    步骤 ln -sf $(which pip3) $(which pip)

  3. 如何查看Linux命令的源代码

    首先要在系统设置-->软件和更新-->Ubuntu软件中勾选源代码选项,否则在下载source时会报如下错: E:您必须在sources.list中指定源代码(deb-src)URI 然后 ...

  4. Spring Boot学习总结三

    1,mybatis在spring boot下的2种使用模式 无配置文件注解版 application.properties添加相关配置 mybatis.type-aliases-package=com ...

  5. python爬虫学习笔记

    爬虫的分类 1.通用爬虫:通用爬虫是搜索引擎(Baidu.Google.Yahoo等)“抓取系统”的重要组成部分.主要目的是将互联网上的网页下载到本地,形成一个互联网内容的镜像备份. 简单来讲就是尽可 ...

  6. 快速删除C#代码中的空白行

    使用正则表达式 ^\s*\n 选中内容或类全部替换为空

  7. mvn test报错

    1 Scenarios (1 passed) 4 Steps (4 passed) 0m11.846s [INFO] Tests run: 1, Failures: 0, Errors: 0, Ski ...

  8. Lending Club贷款数据分析

    python信用评分卡(附代码,博主录制) https://study.163.com/course/introduction.htm?courseId=1005214003&utm_camp ...

  9. 简单迷宫算法(递归与非递归C++实现)

    假定迷宫如下:1代表墙,0代表道路,起点在(1,1),终点(11,9)(PS:下标从0开始计算). 现在寻求一条路径能从起点到达终点(非最短). 有两种解法:递归与非递归. 递归算法思路: 要用递归, ...

  10. CentOS 7 yum 安装php5.6

    注意--enablerepo=remi --enablerepo=remi-php56这两个参数,指定源的意思 配置yum源 追加CentOS 6.5的epel及remi源. # rpm -Uvh h ...