HDU 4059 容斥初步练习
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#define LL long long
using namespace std;
const LL Mod=;
const LL Maxn=;
LL Factor[],cnt,n,m,tot,Rev,Kase,Prime[Maxn];
bool vis[Maxn]; inline LL Quick_Pow(LL x,LL y)
{
LL Ret=;
while (true)
{
if (y&) Ret=(Ret*x)%Mod;
x=(x*x)%Mod; y>>=;
if (y==) break;
}
return Ret;
} inline void Make_Prime()
{
memset(vis,false,sizeof(vis));
for (LL i=;i<Maxn;i++)
{
if (!vis[i]) Prime[++tot]=i;
for (LL j=;j<=tot && Prime[j]*i<Maxn;j++)
{
vis[Prime[j]*i]=true;
if (i%Prime[j]==) break;
}
}
} inline LL Calc(LL N)
{
LL Ret=N;
Ret=(Ret*(N+))%Mod;
Ret=(Ret*(*N+))%Mod;
Ret=(Ret*((*N*N+*N-)%Mod))%Mod;
Ret=(Ret*Rev)%Mod;
return Ret;
}
inline void Get_Factor(LL P)
{
cnt=;
for (LL i=;i<=tot && Prime[i]<=P;i++)
if (P%Prime[i]==)
{
Factor[++cnt]=Prime[i];
while (P%Prime[i]==) P/=Prime[i];
}
if (P!=) Factor[++cnt]=P;
}
inline LL Pow2(LL x) {return (x*x)%Mod;}
inline LL Pow4(LL x) {return (Pow2(x)*Pow2(x))%Mod;}
LL Dfs(LL d,LL start)
{
LL Ret=;
for (LL i=start;i<=cnt;i++)
{
LL tmp=Pow4(Factor[i]);
Ret=(Ret+(tmp*Calc(d/Factor[i]))%Mod)%Mod;
Ret=(Ret-(tmp*Dfs(d/Factor[i],i+))%Mod+Mod)%Mod;
}
return Ret;
}
inline LL Solve()
{
Get_Factor(n);
return ((Calc(n)%Mod)-(Dfs(n,))%Mod+Mod)%Mod;
}
int main()
{
scanf("%lld",&Kase);
Rev=Quick_Pow(,Mod-);
Make_Prime(); for (LL kase=;kase<=Kase;kase++)
{
scanf("%lld",&n);
printf("%lld\n",Solve());
}
return ;
}
HDU 4059
求的是与n互质的数的四次方的和。 首先四次方有个公式。把1~n的然后减去n的约数的四次方即可,这就需要用到容斥了。
Sum(2)-(Sum(2*3)+Sum(2*5)+Sum(2*7)..)+(Sum(2*3*5)+Sum(2*3*7)+Sum(3*5*7)..)-..
HDU 4059 容斥初步练习的更多相关文章
- HDU 4135 容斥
问a,b区间内与n互质个数,a,b<=1e15,n<=1e9 n才1e9考虑分解对因子的组合进行容斥,因为19个最小的不同素数乘积即已大于LL了,枚举状态复杂度不会很高.然后差分就好了. ...
- HDU 2841 容斥 或 反演
$n,m <= 1e5$ ,$i<=n$,$j<=m$,求$(i⊥j)$对数 /** @Date : 2017-09-26 23:01:05 * @FileName: HDU 284 ...
- HDU 1695 容斥
又是求gcd=k的题,稍微有点不同的是,(i,j)有偏序关系,直接分块好像会出现问题,还好数据规模很小,直接暴力求就行了. /** @Date : 2017-09-15 18:21:35 * @Fil ...
- hdu 1220 容斥
http://acm.hdu.edu.cn/showproblem.php?pid=1220 Cube Time Limit: 2000/1000 MS (Java/Others) Memory ...
- Co-prime HDU - 4135_容斥计数
Code: #include<cstdio> #include<cstring> #include<cmath> #include<iostream> ...
- How many integers can you find HDU - 1796_容斥计数
Code: #include<cstdio> using namespace std; typedef long long ll; const int R=13; ll a[R]; ll ...
- hdu 4059 The Boss on Mars 容斥
题目链接 求出ai^4+a2^4+......an^4的值, ai为小于n并与n互质的数. 用容斥做, 先求出1^4+2^4+n^4的和的通项公式, 显然是一个5次方程, 然后6个方程6个未知数, 我 ...
- 数论 + 容斥 - HDU 4059 The Boss on Mars
The Boss on Mars Problem's Link Mean: 给定一个整数n,求1~n中所有与n互质的数的四次方的和.(1<=n<=1e8) analyse: 看似简单,倘若 ...
- HDU - 4059: The Boss on Mars (容斥 拉格朗日 小小的优化搜索)
pro: T次询问,每次给出N(N<1e8),求所有Σi^4 (i<=N,且gcd(i,N)==1) ; sol: 因为N比较小,我们可以求出素因子,然后容斥. 主要问题就是求1到P的 ...
随机推荐
- 苹果MacBook Air安装win7
同事的一台mba,说iOS不习惯,希望装一个win7系统.机器看上去很小巧精致,运行iOS速度飞快.试着点了下鼠标,没反应,翻过来看了下,有个电源开关.拨了一下,细小的指示灯闪了闪,应该加上电了.唉, ...
- php 面试题收集-基础题
1.表单中 get与post提交方法的区别?答:get是发送请求HTTP协议通过url参数传递进行接收,而post是实体数据,可以通过表单提交大量信息. 2.session与cookie的区别?答:s ...
- 在Emacs 24.4中使用在线字典
使用Emacs时经常需要查英语字典怎么办?切到浏览器查?太慢.我想到一个高效的解决方案,利用新发布的Emacs 24.4中的Web浏览器eww,在Emacs中集成一个在线字典,查询光标处的字,一键搞定 ...
- CSS实现背景图尺寸不随浏览器缩放而变化
方法一. 把图片作为background,方法二使用img标签.同时要有一张足够大尺寸的图片. 方法一. 把图片作为background 有几个CSS的属性要提一下:background-size:c ...
- Practical Malware Analysis里有关inetsim\APATEDNS
以前从未接触过linux,碰到了许多问题,按步骤: 1\安装VMWARE,安装ubuntu16.04 问题1:之前装的是VM10,装完后没有安装VMTOOLS,我点安装 VMTOOLS,它弹出“简易安 ...
- Struts2 Result 类型和对应的用法详解
- css3选择器详解
css中除了早先最早的,ID选择器,class选择器一些以外在css3中新加入了新的选择器,新选择器的使用大大的方便了我们的编程,下面我就说一些css3的选择器的使用方法, p 选择了所有 ...
- Office 365 SharePoint 使用Charts Web Part
如果你在web part->业务数据下找不到Charts Web Part 可以修改你的URL https://goitmch.sharepoint.com/sites/xxxx/_layout ...
- (DFS、bitset)AOJ-0525 Osenbei
题目地址 简要题意: 给出n行m列的0.1矩阵,每次操作可以将任意一行或一列反转,即这一行或一列中0变为1,1变为0.问通过任意多次这样的变换,最多可以使矩阵中有多少个1. 思路分析: 行数比较小,先 ...
- asp.net mvc 防止开放重定向
/// <summary> /// 防止开发重定向,篡改returnurl /// </summary> /// <param name="request&qu ...