L3 多层感知机
**本小节用到的数据下载
1、涉及语句 import d2lzh1981 as d2l
数据1 :
d2lzh1981
链接:https://pan.baidu.com/s/1LyaZ84Q4M75GLOO-ZPvPoA
提取码:cf8s
2、涉及语句
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size,root=’/home/kesci/input/FashionMNIST2065’)
数据2 : 为方便,可把数据直接下载下来。
为使用需
1)保持数据文件夹的路径把数据拷贝到jupyter notebook路径下
2)修改 home路径前加点 ,即’./home/kesci/input/FashionMNIST2065’)。
3)修改d2lzh1981文件下的utils.py 的load_data_fashion_mnist() 方法。为
torchvision.datasets.FashionMNIST(root=root, train=True, download=False, transform=transform)
FashionMNIST2065
链接:https://pan.baidu.com/s/1MLhOsusr5hqPn8sik1bUqw
提取码:v0l8**
多层感知机
- 多层感知机的基本知识
- 使用多层感知机图像分类的从零开始的实现
- 使用pytorch的简洁实现
多层感知机的基本知识
深度学习主要关注多层模型。在这里,我们将以多层感知机(multilayer perceptron,MLP)为例,介绍多层神经网络的概念。
隐藏层
下图展示了一个多层感知机的神经网络图,它含有一个隐藏层,该层中有5个隐藏单元。
表达公式
具体来说,给定一个小批量样本X∈Rn×d\boldsymbol{X} \in \mathbb{R}^{n \times d}X∈Rn×d,其批量大小为nnn,输入个数为ddd。假设多层感知机只有一个隐藏层,其中隐藏单元个数为hhh。记隐藏层的输出(也称为隐藏层变量或隐藏变量)为H\boldsymbol{H}H,有H∈Rn×h\boldsymbol{H} \in \mathbb{R}^{n \times h}H∈Rn×h。因为隐藏层和输出层均是全连接层,可以设隐藏层的权重参数和偏差参数分别为Wh∈Rd×h\boldsymbol{W}_h \in \mathbb{R}^{d \times h}Wh∈Rd×h和 bh∈R1×h\boldsymbol{b}_h \in \mathbb{R}^{1 \times h}bh∈R1×h,输出层的权重和偏差参数分别为Wo∈Rh×q\boldsymbol{W}_o \in \mathbb{R}^{h \times q}Wo∈Rh×q和bo∈R1×q\boldsymbol{b}_o \in \mathbb{R}^{1 \times q}bo∈R1×q。
我们先来看一种含单隐藏层的多层感知机的设计。其输出O∈Rn×q\boldsymbol{O} \in \mathbb{R}^{n \times q}O∈Rn×q的计算为
H=XWh+bh,O=HWo+bo,
\begin{aligned} \boldsymbol{H} &= \boldsymbol{X} \boldsymbol{W}_h + \boldsymbol{b}_h,\\ \boldsymbol{O} &= \boldsymbol{H} \boldsymbol{W}_o + \boldsymbol{b}_o, \end{aligned}
HO=XWh+bh,=HWo+bo,
也就是将隐藏层的输出直接作为输出层的输入。如果将以上两个式子联立起来,可以得到
O=(XWh+bh)Wo+bo=XWhWo+bhWo+bo.
\boldsymbol{O} = (\boldsymbol{X} \boldsymbol{W}_h + \boldsymbol{b}_h)\boldsymbol{W}_o + \boldsymbol{b}_o = \boldsymbol{X} \boldsymbol{W}_h\boldsymbol{W}_o + \boldsymbol{b}_h \boldsymbol{W}_o + \boldsymbol{b}_o.
O=(XWh+bh)Wo+bo=XWhWo+bhWo+bo.
从联立后的式子可以看出,虽然神经网络引入了隐藏层,却依然等价于一个单层神经网络:其中输出层权重参数为WhWo\boldsymbol{W}_h\boldsymbol{W}_oWhWo,偏差参数为bhWo+bo\boldsymbol{b}_h \boldsymbol{W}_o + \boldsymbol{b}_obhWo+bo。不难发现,即便再添加更多的隐藏层,以上设计依然只能与仅含输出层的单层神经网络等价。
激活函数
上述问题的根源在于全连接层只是对数据做仿射变换(affine transformation),而多个仿射变换的叠加仍然是一个仿射变换。解决问题的一个方法是引入非线性变换,例如对隐藏变量使用按元素运算的非线性函数进行变换,然后再作为下一个全连接层的输入。这个非线性函数被称为激活函数(activation function)。
下面我们介绍几个常用的激活函数:
ReLU函数
ReLU(rectified linear unit)函数提供了一个很简单的非线性变换。给定元素xxx,该函数定义为
ReLU(x)=max(x,0).
\text{ReLU}(x) = \max(x, 0).
ReLU(x)=max(x,0).
可以看出,ReLU函数只保留正数元素,并将负数元素清零。为了直观地观察这一非线性变换,我们先定义一个绘图函数xyplot。
%matplotlib inline
import torch
import numpy as np
import matplotlib.pyplot as plt
import sys
sys.path.append("/home/kesci/input")
import d2lzh1981 as d2l
print(torch.__version__)
1.3.0
def xyplot(x_vals, y_vals, name):
# d2l.set_figsize(figsize=(5, 2.5))
plt.plot(x_vals.detach().numpy(), y_vals.detach().numpy())
plt.xlabel('x')
plt.ylabel(name + '(x)')
x = torch.arange(-8.0, 8.0, 0.1, requires_grad=True)
y = x.relu()
xyplot(x, y, 'relu')
y.sum().backward()
xyplot(x, x.grad, 'grad of relu')
Sigmoid函数
sigmoid函数可以将元素的值变换到0和1之间:
sigmoid(x)=11+exp(−x).
\text{sigmoid}(x) = \frac{1}{1 + \exp(-x)}.
sigmoid(x)=1+exp(−x)1.
y = x.sigmoid()
xyplot(x, y, 'sigmoid')
依据链式法则,sigmoid函数的导数
sigmoid′(x)=sigmoid(x)(1−sigmoid(x)).
\text{sigmoid}'(x) = \text{sigmoid}(x)\left(1-\text{sigmoid}(x)\right).
sigmoid′(x)=sigmoid(x)(1−sigmoid(x)).
下面绘制了sigmoid函数的导数。当输入为0时,sigmoid函数的导数达到最大值0.25;当输入越偏离0时,sigmoid函数的导数越接近0。
x.grad.zero_()
y.sum().backward()
xyplot(x, x.grad, 'grad of sigmoid')
tanh函数
tanh(双曲正切)函数可以将元素的值变换到-1和1之间:
tanh(x)=1−exp(−2x)1+exp(−2x).
\text{tanh}(x) = \frac{1 - \exp(-2x)}{1 + \exp(-2x)}.
tanh(x)=1+exp(−2x)1−exp(−2x).
我们接着绘制tanh函数。当输入接近0时,tanh函数接近线性变换。虽然该函数的形状和sigmoid函数的形状很像,但tanh函数在坐标系的原点上对称。
y = x.tanh()
xyplot(x, y, 'tanh')
依据链式法则,tanh函数的导数
tanh′(x)=1−tanh2(x).
\text{tanh}'(x) = 1 - \text{tanh}^2(x).
tanh′(x)=1−tanh2(x).
下面绘制了tanh函数的导数。当输入为0时,tanh函数的导数达到最大值1;当输入越偏离0时,tanh函数的导数越接近0。
x.grad.zero_()
y.sum().backward()
xyplot(x, x.grad, 'grad of tanh')
关于激活函数的选择
ReLu函数是一个通用的激活函数,目前在大多数情况下使用。但是,ReLU函数只能在隐藏层中使用。
用于分类器时,sigmoid函数及其组合通常效果更好。由于梯度消失问题,有时要避免使用sigmoid和tanh函数。
在神经网络层数较多的时候,最好使用ReLu函数,ReLu函数比较简单计算量少,而sigmoid和tanh函数计算量大很多。
在选择激活函数的时候可以先选用ReLu函数如果效果不理想可以尝试其他激活函数。
多层感知机
多层感知机就是含有至少一个隐藏层的由全连接层组成的神经网络,且每个隐藏层的输出通过激活函数进行变换。多层感知机的层数和各隐藏层中隐藏单元个数都是超参数。以单隐藏层为例并沿用本节之前定义的符号,多层感知机按以下方式计算输出:
H=ϕ(XWh+bh),O=HWo+bo,
\begin{aligned} \boldsymbol{H} &= \phi(\boldsymbol{X} \boldsymbol{W}_h + \boldsymbol{b}_h),\\ \boldsymbol{O} &= \boldsymbol{H} \boldsymbol{W}_o + \boldsymbol{b}_o, \end{aligned}
HO=ϕ(XWh+bh),=HWo+bo,
其中ϕ\phiϕ表示激活函数。
多层感知机从零开始的实现
import torch
import numpy as np
import sys
sys.path.append("/home/kesci/input")
import d2lzh1981 as d2l
print(torch.__version__)
1.3.0
获取训练集
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size,root='/home/kesci/input/FashionMNIST2065')
定义模型参数
num_inputs, num_outputs, num_hiddens = 784, 10, 256
W1 = torch.tensor(np.random.normal(0, 0.01, (num_inputs, num_hiddens)), dtype=torch.float)
b1 = torch.zeros(num_hiddens, dtype=torch.float)
W2 = torch.tensor(np.random.normal(0, 0.01, (num_hiddens, num_outputs)), dtype=torch.float)
b2 = torch.zeros(num_outputs, dtype=torch.float)
params = [W1, b1, W2, b2]
for param in params:
param.requires_grad_(requires_grad=True)
定义激活函数
def relu(X):
return torch.max(input=X, other=torch.tensor(0.0))
定义网络
def net(X):
X = X.view((-1, num_inputs))
H = relu(torch.matmul(X, W1) + b1)
return torch.matmul(H, W2) + b2
定义损失函数
loss = torch.nn.CrossEntropyLoss()
训练
num_epochs, lr = 5, 100.0
# def train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size,
# params=None, lr=None, optimizer=None):
# for epoch in range(num_epochs):
# train_l_sum, train_acc_sum, n = 0.0, 0.0, 0
# for X, y in train_iter:
# y_hat = net(X)
# l = loss(y_hat, y).sum()
#
# # 梯度清零
# if optimizer is not None:
# optimizer.zero_grad()
# elif params is not None and params[0].grad is not None:
# for param in params:
# param.grad.data.zero_()
#
# l.backward()
# if optimizer is None:
# d2l.sgd(params, lr, batch_size)
# else:
# optimizer.step() # “softmax回归的简洁实现”一节将用到
#
#
# train_l_sum += l.item()
# train_acc_sum += (y_hat.argmax(dim=1) == y).sum().item()
# n += y.shape[0]
# test_acc = evaluate_accuracy(test_iter, net)
# print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f'
# % (epoch + 1, train_l_sum / n, train_acc_sum / n, test_acc))
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size, params, lr)
epoch 1, loss 0.0030, train acc 0.712, test acc 0.806
epoch 2, loss 0.0019, train acc 0.821, test acc 0.806
epoch 3, loss 0.0017, train acc 0.847, test acc 0.825
epoch 4, loss 0.0015, train acc 0.856, test acc 0.834
epoch 5, loss 0.0015, train acc 0.863, test acc 0.847
多层感知机pytorch nn.Sequential实现
import torch
from torch import nn
from torch.nn import init
import numpy as np
import sys
sys.path.append("/home/kesci/input")
import d2lzh1981 as d2l
print(torch.__version__)
1.3.0
初始化模型和各个参数
num_inputs, num_outputs, num_hiddens = 784, 10, 256
net = nn.Sequential(
d2l.FlattenLayer(),
nn.Linear(num_inputs, num_hiddens),
nn.ReLU(),
nn.Linear(num_hiddens, num_outputs),
)
for params in net.parameters():
init.normal_(params, mean=0, std=0.01)
对x的形状转换的这个功能已经自定义一个FlattenLayer类中,放在d2lzh_pytorch中方便后面使用
class FlattenLayer(nn.Module):
def __init__(self):
super(FlattenLayer, self).__init__()
def forward(self, x): # x 的形状: (batch, *, *, ...)
return x.view(x.shape[0], -1)
#若x是包含batchsize维度为4的tensor,即(batchsize,channels,x,y),x.size(0)指batchsize的值
#x = x.view(x.size(0), -1) 等同x = x.view(batchsize, -1)。
torch x = x.view(x.size(0),-1)的理解
训练
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size,root='/home/kesci/input/FashionMNIST2065')
loss = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(net.parameters(), lr=0.5)
num_epochs = 5
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size, None, None, optimizer)
epoch 1, loss 0.0031, train acc 0.701, test acc 0.774
epoch 2, loss 0.0019, train acc 0.821, test acc 0.806
epoch 3, loss 0.0017, train acc 0.841, test acc 0.805
epoch 4, loss 0.0015, train acc 0.855, test acc 0.834
epoch 5, loss 0.0014, train acc 0.866, test acc 0.840
L3 多层感知机的更多相关文章
- DeepLearning学习(1)--多层感知机
想直接学习卷积神经网络,结果发现因为神经网络的基础较弱,学习起来比较困难,所以准备一步步学.并记录下来,其中会有很多摘抄. (一)什么是多层感知器和反向传播 1,单个神经元 神经网络的基本单元就是神经 ...
- Theano3.4-练习之多层感知机
来自http://deeplearning.net/tutorial/mlp.html#mlp Multilayer Perceptron note:这部分假设读者已经通读之前的一个练习 Classi ...
- 学习笔记TF026:多层感知机
隐含层,指除输入.输出层外,的中间层.输入.输出层对外可见.隐含层对外不可见.理论上,只要隐含层节点足够多,只有一个隐含层,神经网络可以拟合任意函数.隐含层越多,越容易拟合复杂函数.拟合复杂函数,所需 ...
- 『TensorFlow』读书笔记_多层感知机
多层感知机 输入->线性变换->Relu激活->线性变换->Softmax分类 多层感知机将mnist的结果提升到了98%左右的水平 知识点 过拟合:采用dropout解决,本 ...
- MXNET:多层感知机
从零开始 前面了解了多层感知机的原理,我们来实现一个多层感知机. # -*- coding: utf-8 -*- from mxnet import init from mxnet import nd ...
- 基于theano的多层感知机的实现
1.引言 一个多层感知机(Multi-Layer Perceptron,MLP)可以看做是,在逻辑回归分类器的中间加了非线性转换的隐层,这种转换把数据映射到一个线性可分的空间.一个单隐层的MLP就可以 ...
- (数据科学学习手札44)在Keras中训练多层感知机
一.简介 Keras是有着自主的一套前端控制语法,后端基于tensorflow和theano的深度学习框架,因为其搭建神经网络简单快捷明了的语法风格,可以帮助使用者更快捷的搭建自己的神经网络,堪称深度 ...
- (数据科学学习手札34)多层感知机原理详解&Python与R实现
一.简介 机器学习分为很多个领域,其中的连接主义指的就是以神经元(neuron)为基本结构的各式各样的神经网络,规范的定义是:由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系 ...
- DeepLearning tutorial(3)MLP多层感知机原理简介+代码详解
本文介绍多层感知机算法,特别是详细解读其代码实现,基于python theano,代码来自:Multilayer Perceptron,如果你想详细了解多层感知机算法,可以参考:UFLDL教程,或者参 ...
随机推荐
- Contest 156
2019-09-29 14:56:09 总体感受:30min解决了前三题,最后一题其实也很简单,但是题目没有看清.赛后5min解决了.总体来说,本次周赛是比较简单的一次. 注意点:首先是hard问题的 ...
- JSP九大内置对象及其作用以及四大域对象
一,什么是内置对象? 在jsp开发中会频繁使用到一些对象,如ServletContext HttpSession PageContext等.如果每次我们在jsp页面中需要使用这些对象都要自己亲自动手创 ...
- pat 乙级 1015. 德才论 (25) c++
http://39.106.25.239 个人网站 欢迎访问 交流 1015. 德才论 (25) 时间限制 200 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Sta ...
- 2020年PHP 面试问题(二)
一.什么是 CGI?什么是 FastCGI?php-fpm,FastCGI,Nginx 之间是什么关系? CGI,通用网关接口,用于WEB服务器和应用程序间的交互,定义输入输出规范,用户的请求通过WE ...
- 微信内置浏览器对于html5的支持
微信内置浏览器对于html5的支持 来源: 作者: 热度:102 日期:14-06-10, 09:10 AM 我在做针对微信的HTML5应用, 目前遇到的几个问题是 一. 安卓版微信直接调用系统浏览器 ...
- 用卷积神经网络和自注意力机制实现QANet(问答网络)
欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/ ,学习更多的机器学习.深度学习的知识! 在这篇文章中,我们将解决自然语言处理(具体是指问答)中最具挑战性 ...
- Colab笔记本能用英伟达Tesla T4了,谷歌的羊毛薅到酸爽
谷歌出品的Colab笔记本,机器学习界薅羊毛神器,如今又有了新福利: 连英伟达最新一代机器学习GPU:Tesla T4都能免费蹭,穷苦羊毛党也顿时高端了起来. 英伟达的Tesla T4,是去年秋天才发 ...
- js Object方法小结
1. Object.defineProperty(obj,prop,{ value:..., writable:boolean,//可写 ...
- 通过pip控制台查看已安装第三方库版本及最新版本
首先执行[pip --help]查看pip命令: 由Commands知:[pip list]命令查看已安装第三方库,另[pip list --outdated]可查看有新版本的第三方库.
- Django ORM查询结果是model对象
xxx.object.get/filter()要查询出的结果为model对象,并不是需要的数据,如果使用需要model_to_dict()函数.