题目:我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?

在分析前不知道是什么序列,所以先看了n=1,n=2,n=3,n=4的情况摸索规律,主要是看 n 和 n-1 的隐含联系。(2*1 指 长宽)

结论:f(n) = f(n-1)+f(n-2)   (n>=3)

 public class Solution {
public int RectCover(int target) {
if(target == 0){
return 0;
}else if(target == 1){
return 1;
}else if(target == 2 ){
return 2;
}else{
return RectCover(target-1)+RectCover(target-2);
}
}
}

剑指offer【11】- 矩形覆盖的更多相关文章

  1. 剑指Offer:矩形覆盖【N1】

    剑指Offer:矩形覆盖[N1] 题目描述 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 题目思考 我们先把2*8的 ...

  2. 剑指OFFER之矩形覆盖(九度OJ1390)

    题目描述: 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 输入: 输入可能包含多个测试样例,对于每个测试案例, 输入 ...

  3. 剑指Offer 10. 矩形覆盖 (递归)

    题目描述 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 题目地址 https://www.nowcoder.com/ ...

  4. 【剑指offer】矩形覆盖

    一.题目: 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 二.思路: 斐波那契数列 三.代码:     

  5. 剑指offer 10矩形覆盖

    我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法 java版本: public class Solution { publ ...

  6. 剑指offer:矩形覆盖

    题目描述: 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 解题思路: 和跳台阶那道题差不多.分别以矩形的两条边长做拓 ...

  7. [剑指Offer] 10.矩形覆盖

    题目描述 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? [思路]可归纳得出结论: f(n) = f(n-1) + f ...

  8. 《剑指offer》矩形覆盖

    一.题目描述 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 二.输入描述 输入n 三.输出描述 输出有多少种不同的覆 ...

  9. 【牛客网-剑指offer】矩形覆盖

    题目: 我们可以用21的小矩形横着或者竖着去覆盖更大的矩形.请问用n个21的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 分析: 假设2为高,n为宽 因为高为2固定,会出现固定情况,即无论 ...

  10. 剑指offer——11矩阵覆盖

    题目描述 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?   题解: 使用递归或者动态规划,明显,递归没有动态规划优 ...

随机推荐

  1. TX2安装pycharm&tensorflow

    https://blog.csdn.net/zt1091574181/article/details/88899668 TX2 (JetPack4.2)安装 Pycharm&TensorFlo ...

  2. div 100% 填充页面

    css中 html,body{ margin:0; padding:0; height:100%; }

  3. Eclipse反编译插件jad的安装

    Eclipse反编译插件jad的安装 JadClipse是Jad的Eclipse插件,是一款非常实用而且方便的Java反编译插件.时间久了,可能忘记在哪里进行配置了,因此记录下以备后续使用(若需要). ...

  4. 201812-1 小明上学 Java

    思路: 上学这个题和放学有区别,上学是小明每到一个路口的情况,是实时更新的.不是只有出发时间,那样就比较复杂了. 这个题需要注意:黄灯之后要等红灯,想一下交通规则. import java.util. ...

  5. PTA 天梯赛 L1

    L1-002 打印沙漏 细节:就是在  (i>j&&i+j<r+1) 这个区间里才有空格,然后就是 for 循环   for(r=1; ;r+=2)  条件不满足之后还会再 ...

  6. JAVA函数库

    1. 文件相关 1.1 判断目录是否存在 public static boolean dictionaryExist(String path) { File file = new File(path) ...

  7. VBE2019的下载、安装和使用(最新版2020.2.22)

    VBE2019可用于XP系统.Windows 7和Windows 10的32位.64位Office对应的VBA环境 安装包下载地址:VBE2019-Setup.zip 下载后解压缩,直接双击安装(请勿 ...

  8. VC++ DLL 1 一点概念

    1.在写代码的时候,我们可能会经常要用到一些封装好的函数或者类,这些可能是C/C++的标准库提供的,也可能是由别人开发的非标准库,这个时候就会涉及到动态链接库或者静态链接库的使用了. 举个例子,做图像 ...

  9. JetBrains系列-插件

       插件官网:http://plugins.jetbrains.com   注意:网站有时不稳定,会造成打不开,属正常现象或许下一秒就好了,可以选择去git等方式下载 1.安装说明:   打开fil ...

  10. POJ 1200 Crazy Search 字符串的Hash查找

    第一次涉及HASH查找的知识 对于字符串的查找有很多前人开发出来的HASH函数,比较常用的好像是ELF 和 BKDR. 这道题没想到突破点是在于其nc值,告诉你组成字符串的字母种类. 还有用26进制, ...