参考原理博客地址https://blog.csdn.net/u013713294/article/details/53407087

一、基本原理

在信息论中,熵是对不确定性的一种度量。信息量越大,不确定性就越小,熵也就越小;信息量越小,不确定性越大,熵也越大。
根据熵的特性,可以通过计算熵值来判断一个事件的随机性及无序程度,也可以用熵值来判断某个指标的离散程度,指标的离散程度越大,该指标对综合评价的影响(权重)越大,其熵值越小。

二、熵值法步骤

1. 选取n个国家,m个指标,则为第i个国家的第j个指标的数值(i=1,
2…, n; j=1,2,…, m);

2. 指标的归一化处理:异质指标同质化

由于各项指标的计量单位并不统一,因此在用它们计算综合指标前,先要对它们进行标准化处理,即把指标的绝对值转化为相对值,并令,从而解决各项不同质指标值的同质化问题。而且,由于正向指标和负向指标数值代表的含义不同(正向指标数值越高越好,负向指标数值越低越好),因此,对于高低指标我们用不同的算法进行数据标准化处理。其具体方法如下:
正向指标:
负向指标:
为第i个国家的第j个指标的数值(i=1, 2…, n; j=1,
2,…, m)。为了方便起见,归一化后的数据仍记为;

3. 计算第j项指标下第i个国家占该指标的比重:

4. 计算第j项指标的熵值:
其中. 满足;

5. 计算信息熵冗余度:

6. 计算各项指标的权值:

7. 计算各国家的综合得分:

注:对正逆指标归一化的时候如果采用的方法不一样,正指标归一化得到的值会大一些,逆指标的归一化得到的值会小一些,然后算权重,逆指标对应的权重也会相应的小,从而逆指标对应的得分也小些,就相当于对逆指标进行了处理。如果对正逆指标归一化采用的方法一样,为了体现逆指标的不利影响,最后应该总分减去逆指标的得分的。两种方法不同,但都是为了体现逆指标对综合得分的不利影响。

matlab代码实现及其注释

https://github.com/wangjiwu/entropy-method-matlab-

只需要更改相应的data 和 指标矩阵即可

main.m 主函数

clc;
load shang_datas % load the data %加载数据 列数表示指标数 , 行数表示评价的个体数
%此数据 7个评价个体 3个评价指标
X = shang_datas %说明指标是正向指标还是负向指标
%此数据第一个是负向指标, 其余为正向指标
Ind=[2 1 1]; %Specify the positive or negative direction of each indicator %S 为分数排名 W为指标权重
[S,W]=shang(X,Ind) % get the score

其他函数请查看github项目地址

运行结果

我使用的数据是 3个指标, 7个待评价个体



进行处理后得到 7个待评价个体的分数和 指标所占的权重

熵权法原理及matlab代码实现的更多相关文章

  1. 熵权法(the Entropy Weight Method)以及MATLAB实现

    按照信息论基本原理的解释,信息是系统有序程度的一个度量,熵是系统无序程度的一个度量:如果指标的信息熵越小,该指标提供的信息量越小,在综合评价中所起作用理当越小,权重就应该越低.因此,可利用信息熵这个工 ...

  2. 基于topsis和熵权法

    % % X 数据矩阵 % % n 数据矩阵行数即评价对象数目 % % m 数据矩阵列数即经济指标数目 % % B 乘以熵权的数据矩阵 % % Dist_max D+ 与最大值的距离向量 % % Dis ...

  3. 吴裕雄 python 熵权法确定特征权重

    一.熵权法介绍 熵最先由申农引入信息论,目前已经在工程技术.社会经济等领域得到了非常广泛的应用. 熵权法的基本思路是根据各个特征和它对应的值的变异性的大小来确定客观权重. 一般来说,若某个特征的信息熵 ...

  4. 利用Gabor变换法分析纹理图像 matlab代码实现

    Gabor变化属于加窗傅里叶变换,Gabor函数可以在频域不同尺度.不同方向上提取相关的特征.Gabor函数与人眼的生物作用相仿,所以经常用于纹理识别上,并取得了较好的效果. 二维Gobor滤波函数: ...

  5. Python实现客观赋权法

    本文从阐述Python实现客观赋权法的四种方式: 一. 熵权法 二. 因子分析权数法(FAM) 三. 主成分分析权数法(PCA) 四. 独立性权系数法 Python实现客观赋权法,在进行赋权前,先导入 ...

  6. MATLAB代码v2.0

    % % V 原始评价指标矩 % % v_ij 第i个地区第j个指标的初始值 % % r_ij 第i个地区第j个指标的标准化值 % % R 标准化后的评价矩阵 % % m 统计地区总个数 % % n 已 ...

  7. 如何寻找决策最优解?熵权TOPSIS助你科学决策

    熵权topsis是一种融合了熵值法与TOPSIS法的综合评价方法.熵值法是一种客观赋值法,可以减少主观赋值带来的偏差:而topsis法是一种常见的多目标决策分析方法,适用于多方案.多对象的对比研究,从 ...

  8. 如何加速MATLAB代码运行

    学习笔记 V1.0 2015/4/17 如何加速MATLAB代码运行 概述 本文源于LDPCC的MATLAB代码,即<CCSDS标准的LDPC编译码仿真>.由于代码的问题,在信息位长度很长 ...

  9. AX中四种库存ABC分析法原理研究

    库存ABC分类,简单的说就是抓大放小,是为了让我们抓住重点,用最大精力来管理最重要的物料,而对于不太重要的物料则可以用较少的精力进行管理.它和我们平常说的八二法则有异曲同工之妙. 既然要应用库存ABC ...

随机推荐

  1. Python Ethical Hacking - BACKDOORS(6)

    File Upload: A file is a series of characters. Uploading a file is the opposite of downloading a fil ...

  2. Ubuntu安装Redis过程完整笔记

    在阿里云与百度云均已经安装成功~~ 下载文件 切换路径设置下载存放地址 cd /home 下载安装包(http://download.redis.io/releases建议下载最新稳定版本) sudo ...

  3. iconfont - 好用免费的图标库

    某里出品 打开首页???????搜索框在哪里 网站:点我

  4. 软件测试工程师之必备SQL语句基础

    作为一个软件测试工程师,我们在测试过程中往往需要对数据库数据进行操作,但是我们的操作大多以查询居多,有时会涉及到新增,修改,删除等操作,所以我们其实并不需要对数据库的操作有特别深入的了解,以下是我在工 ...

  5. DJANGO-天天生鲜项目从0到1-006-首页-内容展示

    本项目基于B站UP主‘神奇的老黄’的教学视频‘天天生鲜Django项目’,视频讲的非常好,推荐新手观看学习 https://www.bilibili.com/video/BV1vt41147K8?p= ...

  6. HRNet + Object Contextual Representation

    文章内容来自CCF-CV走进高校报告会中MSRA王井东老师的报告"Learning high-resolution and object-contextual representations ...

  7. .NET CORE HttpClient使用

    自从HttpClient诞生依赖,它的使用方式一直备受争议,framework版本时代产生过相当多经典的错误使用案例,包括Tcp链接耗尽.DNS更改无感知等问题.有兴趣的同学自行查找研究.在.NETC ...

  8. 字符输入输出不一样!:什么情况下需要getchar()吃空格和回车

    今天一个很简单的题居然一直不对... 大概是用字符组成的一个方块..然后各种转换, 关键是我算法都写好了,然而输入进去的字符方块直接输出来都不太对... 后来想起吃空格问题,因为scanf了%c的话, ...

  9. PHP系列之钩子

    PHP 提供的钩子 PHP 和 Zend Engine 为扩展提供了许多不同的钩子,这些扩展允许扩展开发人员以 PHP userland 无法提供的方式控制 PHP 运行时. 本章将展示各种钩子和从扩 ...

  10. PHP array_slice() 函数

    实例 从数组的第二个元素开始取出,并返回直到数组末端的所有元素: <?php$a=array("red","green","blue" ...