带权二分图最大匹配KM算法
二分图的判定
如果一个图是连通的,可以用如下的染色法判定是否二分图:
我们把
X部的结点颜色设为0,Y部的颜色设为1。从某个未染色的结点
u开始,做BFS或者DFS。把u染为0,枚举u的儿子v。如果v未染色,就染为与u相反的颜色,如果已染色,则判断u与v的颜色是否相同,相同则不是二分图。如果一个图不连通,则在每个连通块中作判定。
#include <bits/stdc++.h>
const int maxn = 505;
std::vector<int> e[maxn];
int m,n,color[maxn];
bool flag;//全局,标记是否有环
void dfs(int u){
if(flag) return;//如果已经存在环就没必要接着递归了
int len = e[u].size();//省点常数
for(int i = 0; i < len; i++){ //遍历所有相邻顶点,即连着的点
int v = e[u][i];
if(color[v]==0){//v还未访问,染色并递归
color[v] = -color[u];
dfs(v);
}
else if(color[v]==color[u]){
flag=1;//说明有环
return;
}
}
} void solve(){
for(int i = 0; i < n; i++){
if(color[i] == 0){
color[i] = 1;
dfs(i);
if(flag){
printf("NOT BICOLORABLE.\n");
return;
}
}
}
printf("BICOLORABLE.\n");
}
int main(){
while(~scanf("%d%d",&n,&m)){
memset(color, 0, sizeof(color));
memset(e, 0, sizeof(e));
for(int i = 0; i < m; i++){
int u,v;scanf("%d%d",&u,&v);
e[u].push_back(v);e[v].push_back(u);
}
solve();
}
return 0;
}
最大匹配KM算法
顶标:设顶点 \(X_i\) 的顶标为 \(A[i]\),顶点 \(Y_j\) 的顶标为 \(B[j]\) ,顶点 \(X_i\) 与 \(Y_j\) 之间的边权为 \(w[i][j]\),初始化时,\(A[i]\) 的值为与该点关联的最大边权值,\(B[j]\) 的值为
0相等子图:选择 \(A[i] + B[j] = w[i][j]\) 的边 \(<i, j>\) 构成的子图,就是相等子图。
算法执行过程中,对任一条边\(<i, j>\) ,\(A[i] + B[j] >= w[i][j]\) 恒成立。
slack数组存的数是Y部的点相等子图时,最小要增加的值算法图示:
从\(X_1\) 开始跑匈牙利,匹配的条件是:\(A[i] + B[j] = w[i][j]\) ,显然 $ X_1$ 和 \(Y_3\) 匹配成功。

接着从 \(X_2\) 开始,\(A[X_2]+B[Y_3]==w[X_2][X_3]\) ,此时 \(Y_3\) 已被 \(X_1\) 匹配,尝试让 \(X_1\) 换一个匹配对象,但在 \(X_1\) 的邻接点没有满足:\(A[i] + B[j] = w[i][j]\) 的点,这些相临边和顶标和的最小差值为:\(minz=1\) ,把此时已标记的 \(X\) 部的顶标减去\(minz\),即:\(A[x_1]=5-1=4,A[X_2]-1=3\) , \(Y\) 部的此时标记的顶标加上\(minz\),即:\(B[y_3]=0+1=1\) ,此时\(A[X_1]+B[Y_1]==w[X_1][Y_1]\)。

最后从\(X_3\) 开始找增广路,\(X_3\) 匹配 \(Y_3\) ,不满足,调整顶标,即\(A[3]=5-1=4\),匹配\(Y_3\) 成功,尝试劝说 \(X_2\) 寻找新的匹配,此时 \(Y_1\) 满足匹配,尝试让 \(X_1\) 寻找新的匹配,此时\(X_1\)已找不到新的为匹配的点,匹配失败,回溯到 \(X_2\) ,

Code#include <bits/stdc++.h>
const int maxn = 300 + 10,maxe=1e4+5,Inf = 0x3f3f3f3f;
struct Edee{int to,w,next;}e[maxe];
int n,m,len,head[maxn],g[maxn][maxn];
int wx[maxn], wy[maxn];//每个点的顶标值(需要根据二分图处理出来)
int match[maxn];//每个Y部点所匹配的X部的点
int visx[maxn], visy[maxn];//每个点是否加入增广路
int slack[maxn];//边权和顶标最小的差值
void Insert(int u,int v){
e[++len].to=v;e[len].next=head[u];head[u]=len;
}
bool dfs(int u){//进入DFS的都是X部的点,找到增光路返回1,否则返回0
visx[u] = 1;//标记进入增广路
for(int i = head[u]; i ; i=e[i].next){
int v = e[i].to;
if(!visy[v]){//如果Y部的点还没进入增广路,并且存在路径
int t = wx[u] + wy[v] - g[u][v];
if(t == 0){//t为0说明是相等子图
visy[v] = 1;//加入增广路
if(match[v] == -1 || dfs(match[v])){
match[v] = u;//进行匹配
return 1;
}
}
else if(t > 0)//此处t一定是大于0,因为顶标之和一定>=边权
slack[v] = std::min(slack[v], t);
//slack[v]存的是Y部的点需要变成相等子图顶标值最小增加多少
}
}
return false;
} int KM(){
memset(match, -1, sizeof(match));
memset(wx, 0, sizeof(wx));//wx的顶标为该点连接的边的最大权值
memset(wy, 0, sizeof(wy));//wy的顶标为0
for(int u = 1; u <= n; u++){//预处理出顶标值
for(int i = head[u]; i ; i=e[i].next)
wx[u] = std::max(wx[u], g[u][e[i].to]);
}
for(int i = 1; i <= n; i++){//枚举X部的点
memset(slack, 0x3f, sizeof(slack));
while(1){
memset(visx, 0, sizeof(visx));
memset(visy, 0, sizeof(visy));
if(dfs(i))break;//已经匹配正确
int minz = Inf;
for(int j = 1; j <= n; j++)
if(!visy[j] && minz > slack[j])
minz = slack[j];//找出还没经过的点中,需要变成相等子图的最小额外增加的顶标值
//将X部已访问的顶标减去minz,Y部已访问的顶标加上minz
for(int j = 1; j <= n; j++)
if(visx[j])wx[j] -= minz;
for(int j = 1; j <= n; j++)
//修改顶标后,要把所有不在交错树中的Y顶点的slack值都减去minz
if(visy[j])wy[j] += minz;
else slack[j] -= minz;//未在增光路,但相应的X部已访问的顶标减少了,其相邻的未访问的期望也减小
}
} int ans = 0;//二分图最优匹配权值
for(int i = 1; i <= n; i++)
if(match[i] != -1)ans += g[match[i]][i];
return ans;
}
int main(){
while(scanf("%d%d", &n,&m) != EOF){
for(int i = 1; i <= m; i++){
int u,v,w;scanf("%d%d%d", &u,&v,&w);
g[u][v]=w;Insert(u,v);
}
printf("%d\n", KM());
}
return 0;
}
带权二分图最大匹配KM算法的更多相关文章
- UVA1349(带权二分图最大匹配 --> KM算法模板)
UVA1349 题意:给定一些有向带权边,求出把这些边构造成一个个环,总权值最小 解法: 对于带权的二分图的匹配问题可以用通过KM算法求解. 要求最大权匹配就是初始化g[i][j]为0,直接跑就可以: ...
- HDU 2255 奔小康赚大钱(带权二分图最大匹配)
HDU 2255 奔小康赚大钱(带权二分图最大匹配) Description 传说在遥远的地方有一个非常富裕的村落,有一天,村长决定进行制度改革:重新分配房子. 这可是一件大事,关系到人民的住房问题啊 ...
- Luogu 1559 运动员最佳匹配问题(带权二分图最大匹配)
Luogu 1559 运动员最佳匹配问题(带权二分图最大匹配) Description 羽毛球队有男女运动员各n人.给定2 个n×n矩阵P和Q.P[i][j]是男运动员i和女运动员j配对组成混合双打的 ...
- "《算法导论》之‘图’":不带权二分图最大匹配(匈牙利算法)
博文“二分图的最大匹配.完美匹配和匈牙利算法”对二分图相关的几个概念讲的特别形象,特别容易理解.本文介绍部分主要摘自此博文. 还有其他可参考博文: 趣写算法系列之--匈牙利算法 用于二分图匹配的匈牙利 ...
- 运动员最佳匹配问题 KM算法:带权二分图匹配
题面: 羽毛球队有男女运动员各n人.给定2 个n×n矩阵P和Q.P[i][j]是男运动员i和女运动员j配对组成混合双打的男运动员竞赛优势:Q[i][j]是女运动员i和男运动员j配合的女运动员竞赛优势. ...
- POJ 2195 Going Home (带权二分图匹配)
POJ 2195 Going Home (带权二分图匹配) Description On a grid map there are n little men and n houses. In each ...
- POJ 2195 Going Home | 带权二分图匹配
给个地图有人和房子 保证人==房子,每个人移动到房子处需要花费曼哈顿距离的代价 问让人都住在房子里最小代价 显然是个带权二分图最大匹配 转化成以一个网络,规定w是容量,c是代价 1.S向人连边,w=1 ...
- KM(Kuhn-Munkres)算法求带权二分图的最佳匹配
KM(Kuhn-Munkres)算法求带权二分图的最佳匹配 相关概念 这个算法个人觉得一开始时有点难以理解它的一些概念,特别是新定义出来的,因为不知道是干嘛用的.但是,在了解了算法的执行过程和原理后, ...
- 浅谈二分图的最大匹配和二分图的KM算法
二分图还可以,但是我不太精通.我感觉这是一个很烦的问题但是学网络流不得不学它.硬啃吧. 人比较蠢,所以思考几天才有如下理解.希望能说服我或者说服你. 二分图的判定不再赘述一个图是可被划分成一个二分图当 ...
随机推荐
- mongodb3.4.5用http访问28017端口
4.要想用28017去访问,百度说必须开启http服务 4.1.前提: windows下安装mongodb必须装在没有中文和空格的目录下,我直接装在了D盘根目录 删掉MongoDB\Server\3. ...
- python中的一些内置函数
1.布尔类型 2.求和sum 3.取全局变量和局部变量 4.ascii码和字符集 chr().ord() 5.看某个功能下有哪些方法 help(x).dir(x) 6.exec执行python代码 7 ...
- NSOperation类
NSOperation 抽象类 NSOperation 是一个"抽象类",不能直接使用 抽象类的用处是定义子类共有的属性和方法 在苹果的头文件中,有些抽象类和子类的定义是在同一个头 ...
- Java基础之HashMap原理分析(put、get、resize)
在分析HashMap之前,先看下图,理解一下HashMap的结构 我手画了一个图,简单描述一下HashMap的结构,数组+链表构成一个HashMap,当我们调用put方法的时候增加一个新的 key-v ...
- python面向对象单继承,多继承和super()调用
python 目录 python 1.继承 1.单继承 2.多继承 3.子类重写父类的同名属性和方法 核心点: 4.多层继承 5.super()的使用 1.继承 1.单继承 说明: 虽然子类没有定义_ ...
- vue 中后台 列表的增删改查同一解决方案
查看 & 查询 常⻅业务列表⻚都是由 搜索栏 和 数据列表 组成. 其中: 搜索栏包含 搜索条件 . 新增 . 批量xx . 导出 等对 数据列表 全局操作功能项. 数据列表包含 分⻚ 和每条 ...
- 文件存到aws的S3后, 调用getimagesize失败分析
一.问题 将图片在windows下用图片查看器修改后,上传到s3中,调用getimagesize获取图片信息总是返回false,其它图片正常: 代码如下: $fileName = 's3://sdk1 ...
- docker注册&打包
在https://hub.docker.com上注册账号,新建reosity docker images命令列出dockerlist docker login命令登录:这其中出现了一个问题,登录不上去 ...
- hystrix源码小贴士之调用异常处理
executeCommandAndObserve方法处理onerror异常. return execution.doOnNext(markEmits) .doOnCompleted(markOnCom ...
- 结构体排序中sort的自定义函数cmp()
水题链接 #include<iostream> #include<cstdio> #include<algorithm> using namespace std; ...