描述


在上一回中小Hi和小Ho控制着主角收集了分散在各个木桥上的道具,这些道具其实是一块一块骨牌。

主角继续往前走,面前出现了一座石桥,石桥的尽头有一道火焰墙,似乎无法通过。

小Hi注意到在桥头有一张小纸片,于是控制主角捡起了这张纸片,只见上面写着:

将M块骨牌首尾相连放置于石桥的凹糟中,即可关闭火焰墙。切记骨牌需要数字相同才能连接。

——By 无名的冒险者

小Hi和小Ho打开了主角的道具栏,发现主角恰好拥有M快骨牌。

小Ho:也就是说要把所有骨牌都放在凹槽中才能关闭火焰墙,数字相同是什么意思?

小Hi:你看,每一块骨牌两端各有一个数字,大概是只有当数字相同时才可以相连放置,比如:

小Ho:原来如此,那么我们先看看能不能把所有的骨牌连接起来吧。

输入


第1行:2个正整数,N,M。分别表示骨牌上出现的最大数字和骨牌数量。1≤N≤1,000,1≤M≤5,000

第2..M+1行:每行2个整数,u,v。第i+1行表示第i块骨牌两端的数字(u,v),1≤u,v≤N

输出


第1行:m+1个数字,表示骨牌首尾相连后的数字

比如骨牌连接的状态为(1,5)(5,3)(3,2)(2,4)(4,3),则输出"1 5 3 2 4 3"

你可以输出任意一组合法的解。

样例输入

5 5
3 5
3 2
4 2
3 4
5 1

样例输出

1 5 3 4 2 3

题解


照例放官方题解:http://hihocoder.com/problemset/problem/1181

注意可能会出现重边

#include <bits/stdc++.h>
#define ll long long
#define inf 1000000000
#define PI acos(-1)
#define bug puts("here")
#define REP(i,x,n) for(int i=x;i<=n;i++)
#define DEP(i,n,x) for(int i=n;i>=x;i--)
#define mem(a,x) memset(a,x,sizeof(a))
using namespace std;
inline int read(){
int x=0,f=1;
char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-') f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
const int N=1005;
int G[N][N];
int ans[N<<3],tot=0,n,m,x,y;
void euler(int u){
REP(v,1,n) if(G[u][v]>0){
G[u][v]--;G[v][u]--;
euler(v);
}
ans[tot++]=u;
}
int book[N];
int main(){
n=read();m=read();
REP(i,1,m) x=read(),y=read(),G[x][y]++,G[y][x]++;book[x]++,book[y]++;
int rt=1;
REP(i,1,n) if(book[i]&1) rt=i;
euler(rt);
REP(i,0,tot-1) printf(i==0?"%d":" %d",ans[i]);
puts("");
return 0;
}

【HIHOCODER 1181】欧拉路·二的更多相关文章

  1. hihocoder 1181 欧拉路.二

    传送门:欧拉路·二 #1181 : 欧拉路·二 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 在上一回中小Hi和小Ho控制着主角收集了分散在各个木桥上的道具,这些道具其 ...

  2. hihoCoder #1181: 欧拉路·二 (输出路径)

    题意: 给定一个图,要求打印出任一条欧拉路径(保证图肯定有欧拉路). 思路: 深搜的过程中删除遍历过的边,并在回溯时打印出来.在深搜时会形成多个环路,每个环都有一个或多个结点与其他环相扣,这样就可以产 ...

  3. [hihoCoder] 第五十周: 欧拉路·二

    题目1 : 欧拉路·二 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 在上一回中小Hi和小Ho控制着主角收集了分散在各个木桥上的道具,这些道具其实是一块一块骨牌. 主角 ...

  4. hiho欧拉路·二 --------- Fleury算法求欧拉路径

    hiho欧拉路·二 分析: 小Ho:这种简单的谜题就交给我吧! 小Hi:真的没问题么? <10分钟过去> 小Ho:啊啊啊啊啊!搞不定啊!!!骨牌数量一多就乱了. 小Hi:哎,我就知道你会遇 ...

  5. hihoCoder #1182 欧拉路·三 (变形)

    题意: 写出一个环,环上有2^n个格子,每个格子中的数字是0或1,相连着的n个格子可以组成一个数的二进制,要求给出这2^n个数字的序列,使得组成的2^n个数字全是不同的.(即从0到2^n-1) 思路: ...

  6. hihoCoder #1176 : 欧拉路·一 (简单)

    题意:给出n个岛,每个岛都有桥到达其他岛,且桥数可多可少(即使两岛有多桥),判断是否是欧拉路(即每条桥只能走一次,所有桥都能遍历1遍). 思路: 满足如下条件之一者即为欧拉路: 1.连通图,每个岛的度 ...

  7. 【HIHOCODER 1176】 欧拉路·一

    描述 小Hi和小Ho最近在玩一个解密类的游戏,他们需要控制角色在一片原始丛林里面探险,收集道具,并找到最后的宝藏.现在他们控制的角色来到了一个很大的湖边.湖上有N个小岛(编号1..N),以及连接小岛的 ...

  8. [hihoCoder] 第四十九周: 欧拉路·一

    题目1 : 欧拉路·一 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Hi和小Ho最近在玩一个解密类的游戏,他们需要控制角色在一片原始丛林里面探险,收集道具,并找到最 ...

  9. hiho 1182 : 欧拉路·三

    1182 : 欧拉路·三 这时题目中给的提示: 小Ho:是这样的,每次转动一个区域不是相当于原来数字去掉最左边一位,并在最后加上1或者0么. 于是我考虑对于"XYYY",它转动之后 ...

随机推荐

  1. ADC5513

    一 C5513 u32 ADC5513_GetValue(void){  u32 ADValue,i;  bool data_bit = false;   C5513_SCK=0;  C5513_CS ...

  2. (转)nginx应用总结(1)--基础认识和应用参数优化配置

    在linux系统下使用nginx作为web应用服务,用来提升网站访问速度的经验已五年多了,今天在此对nginx的使用做一简单总结. 一.nginx服务简介Nginx是一个高性能的HTTP和反向代理服务 ...

  3. jsfiddle.net上的记录

    1.JQuery: http://jsfiddle.net/uryc1908/ 2.e-chart: http://jsfiddle.net/8fq96a7s/ 3.easyUI http://jsf ...

  4. Funsioncharts 线图 破解

    在线示例:http://jsfiddle.net/henley/xnozyLa8/2/ 下载:http://files.cnblogs.com/files/ycdx2001/chart.zip

  5. jQuery dataTable 操作个人使用总结

    用过之后总会忘,不停的查,不停的忘.这里记录一下,仅为个人简单总结,具体使用方法请看官方API文档. 1. 获取表中行数.  var rowNum = $(tableSelector).DataTab ...

  6. 有关在python中使用Redis(一)

    python作为一种处理数据的脚本语言本身有许多方法函数供大家使用,有时候为了提升数据处理速度(如海量数据的访问或者海量数据的读取),涉及分布式管理架构,可能需要用到Redis,Redis是一个开源的 ...

  7. ribbon hystrix仪表盘

    Circuit Breaker: Hystrix Dashboard (断路器:hystrix 仪表盘) 基于service-ribbon 改造下: pom.xml加入: <dependency ...

  8. Webpack 入门学习

    1.什么是Webpack? Webpack可以看做是模块打包机:它做的事情是,分析你的项目结构,找到JavaScript模块以及其它的一些浏览器不能直接运行的拓展语言(Scss,TypeScript等 ...

  9. JavaScript笔记6-数组新方法

    七.ECMAScript5关于数组的新方法 1.forEach():遍历数组,并为每个元素调用传入的函数;     举例:    var a = [1,2,3]; var sum = 0; //传一个 ...

  10. Volley与Picasso的对比

    Volley与Picasso的对比 想写一篇文章来对比一下Volley以及Picasso,有人或许会说了,Volley和Picasso的服务对象都不同,Picasso是专注于图片的下载以及处理,而Vo ...