另一个集合\(s\)的\(ghd\)为\(max\{gcd(s')||s'|>=0.5|s|\}\) 给定序列\(a\),求\(ghd\)

随机化算法。因为\(|s'|\geq 0.5|S|\),所以每个元素在\(s'\)中的概率为\(0.5\),我们可以钦定一个元素令它在\(s'\)中,那么算出它和其他所有元素的\(\gcd\),用\(map\)将所有的\(\gcd\)存起来,\(first\)存值,\(second\)存这个值的出现次数。然后从大到小枚举每一个\(\gcd\),并把比它大的那些且是它倍数的\(\gcd\)的出现次数加起来,如果某一次某个\(\gcd\)出现次数大于一半,那么该答案可行

为了避免TLE加几发剪枝,比如如果随机出来的元素比最优答案小就无视,如果两个数的\(\gcd\)比最优答案小无视,从大到小枚举元素只要有一个答案成立剩下的全都可以无视。然后\(rand\)个\(15\)次左右基本就能出答案了

//minamoto
#include<bits/stdc++.h>
#define R register
#define ll long long
#define fi first
#define se second
#define IT map<ll,int>::iterator
#define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
ll read(){
R ll res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
char sr[1<<21],z[20];int C=-1,Z=0;
inline void Ot(){fwrite(sr,1,C+1,stdout),C=-1;}
void print(R int x){
if(C>1<<20)Ot();if(x<0)sr[++C]='-',x=-x;
while(z[++Z]=x%10+48,x/=10);
while(sr[++C]=z[Z],--Z);sr[++C]='\n';
}
const int N=1e6+5;
ll a[N],ans=1,x;int n,pos;map<ll,int>mp;
ll gcd(ll x,ll y){return y?gcd(y,x%y):x;}
int main(){
// freopen("testdata.in","r",stdin);
srand(time(0));
n=read();
fp(i,1,n)a[i]=read();
fp(T,1,15){
pos=(1ll*rand()*RAND_MAX+rand())%n+1;
if(a[pos]<=ans)continue;
fp(i,1,n){
x=gcd(a[pos],a[i]);if(x<=ans)continue;
mp.count(x)?++mp[x]:mp[x]=1;
}if(mp.empty())continue;
IT it=mp.end();
do{
--it;if(it->fi<=ans)break;
int cnt=0;
for(IT itl=it;itl!=mp.end()&&(cnt<<1)<n;++itl)
if(itl->fi%it->fi==0)cnt+=itl->se;
if((cnt<<1)>=n){ans=it->fi;break;}
}while(it!=mp.begin());
map<ll,int>().swap(mp);
}printf("%I64d\n",ans);
return 0;
}

CF364D Ghd(随机化)的更多相关文章

  1. [CF364D]Ghd

    [CF364D]Ghd 题目大意: 有\(n(n\le10^6)\)个数\(A_{1\sim n}(A_i\le10^{12})\),从中选取\(\lceil\frac n2\rceil\)个数,使得 ...

  2. 【数学 随机 技巧】cf364D. Ghd

    随机化选讲的例题 John Doe offered his sister Jane Doe find the gcd of some set of numbers a. Gcd is a positi ...

  3. ZJOI2019一轮游记

    Preface 期待已久的省选终于开始了233,关于之前的一些内容,在ZJOI2019一轮停课刷题记录都可以找到,这里不再赘述 ZJOI2019,Bless All Day -1 今天难得有休息,昨晚 ...

  4. APP漏洞扫描用地址空间随机化

    APP漏洞扫描用地址空间随机化 前言 我们在前文<APP漏洞扫描器之本地拒绝服务检测详解>了解到阿里聚安全漏洞扫描器有一项静态分析加动态模糊测试的方法来检测的功能,并详细的介绍了它在针对本 ...

  5. rabin 素性检验 随机化算法

    #include <cstdio> #include <cstdlib> #include <ctime> typedef long long int LL; in ...

  6. [USACO2005][POJ2454]Jersey Politics(随机化)

    题目:http://poj.org/problem?id=2454 题意:给你3*k(k<=60)个数,你要将它们分成3个长度为k的序列,使得其中至少有两个序列的和大于k*500 分析:以为有高 ...

  7. POJ 矩阵相乘 (随机化算法-舍伍德(Sherwood))

    周三的算法课,主要讲了随机化算法,介绍了拉斯维加斯算法,简单的理解了为什么要用随机化算法,随机化算法有什么好处. 在处理8皇后问题的时候,穷举法是最费时的,回朔比穷举好点,而当数据量比较大的时候,如1 ...

  8. POJ3318--Matrix Multiplication 随机化算法

    Description You are given three n × n matrices A, B and C. Does the equation A × B = C hold true? In ...

  9. hdu 4739 Zhuge Liang's Mines 随机化

    Zhuge Liang's Mines Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.p ...

随机推荐

  1. Vue使用axios

    main.js-------------------   import axios from "axios"; import qs from "qs"; imp ...

  2. 面向资源操作的http请求

    Guide | Echo - High performance, minimalist Go web framework https://echo.labstack.com/guide e.POST( ...

  3. 数据库的update、delete、insert和select用法

    String sql=null; 1.sql="update 表名 set <列名>=<表达式> [where=<表达式>]" 2.sql=&q ...

  4. Codeforces 126D Fibonacci Sums 求n由随意的Sum(fib)的方法数 dp

    版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/qq574857122/article/details/34120269 题目链接:点击打开链接 题意 ...

  5. Exam 70-762 Developing SQL Databases

    这个考试还是很有用的,教了很多有用的东西,不错,虽然考试需要很多钱,不过值的尝试.虽然用了sql server 这么多年但是对于事务.多并发的优化还是处于小学生的水平,通过这次考试争取让自己提一个档次 ...

  6. HTTP1.0 与HTTP2.0的区别

    一.多路复用 HTTP2.0 使用了多路复用技术,做到同一个连接并发处理多个请求,而且并发请求的数量比HTTP1.1大了好几个数量级. 二.数据压缩 HTTP1.1不支持header数据压缩,HTTP ...

  7. Android 如何永久性开启adb 的root权限【转】

    本文转载自:https://www.2cto.com/kf/201702/593999.html adb 的root 权限是在system/core/adb/adb.c 中控制.主要根据ro.secu ...

  8. Codeforces Round #363 (Div. 2) B. One Bomb —— 技巧

    题目链接:http://codeforces.com/contest/699/problem/B 题解: 首先统计每行每列出现'*'的次数,以及'*'出现的总次数,得到r[n]和c[m]数组,以及su ...

  9. UVA1025 A Spy in the Metro —— DP

    题目链接: https://vjudge.net/problem/UVA-1025 题解: 详情请看紫书P267. 与其说是DP题,我觉得更像是模拟题,特别是用记忆化搜索写. 递推: #include ...

  10. zabbix 中 宏 的介绍

    宏的作用是便于在模板.items.trigger中的引用.宏的名称为 {$名称},宏的字符范围为 A~Z.0~9._ . 例如: 在key中的宏: net.tcp.service[ssh,{$SSH_ ...