网络流(最大密集度子图,分数规划):UvaLive 3709 Hard Life
John is a Chief Executive Officer at a privately owned medium size company. The owner of the company has decided to make his son Scott a manager in the company. John fears that the owner will ultimately give CEO position to Scott if he does well on his new manager position, so he decided to make Scott's life as hard as possible by carefully selecting the team he is going to manage in the company.
John knows which pairs of his people work poorly in the same team. John introduced a hardness factor of a team -- it is a number of pairs of people from this team who work poorly in the same team divided by the total number of people in the team. The larger is the hardness factor, the harder is this team to manage. John wants to find a group of people in the company that are harderst to manage and make it Scott's team. Please, help him.

In the example on the picture the hardest team consists of people 1, 2, 4, and 5. Among 4 of them 5 pairs work poorly in the same team, thus hardness factor is equal to
. If we add person number 3 to the team then hardness factor decreases to
.
Input
The input will contain several test cases, each of them as described below. Consecutive test cases are separated by a single blank line.
The first line of the input contains two integer numbers n
and m
(1
n
100, 0
m
1000)
. Here n
is a total number of people
in the company (people are numbered from 1 to n
), and m
is the number
of pairs of people who work poorly in the same team. Next m
lines
describe those pairs with two integer numbers ai
and bi
(1
ai, bi
n, ai
bi)
on a line. The order of people in a pair is arbitrary and no
pair is listed twice.
Output
For each test case, the output must follow the description below.
The outputs of two consecutive cases will be separated by a blank line.
Write to the output an integer number k
(1
k
n)
-- the
number of people in the hardest team, followed by k
lines listing people
from this team in ascending order. If there are multiple teams with the
same hardness factor then write any one.
Note, that in the last example any team has hardness factor of zero,
and any non-empty list of people is a valid answer.
Sample Input
5 6
1 5
5 4
4 2
2 5
1 2
3 1 4 0
Sample Output
4
1
2
4
5 1
1
胡博涛论文有提到。
WA67发,都不敢刷Uva了。
原因是最后的答案不能用lam获得,因为lam不一定是最优解,而且还会得到错误答案。
#include <iostream>
#include <cstring>
#include <cstdio>
#include <queue>
using namespace std;
const int maxn = ;
const int maxm = ;
const double INF = 0x3fffffff;
const double eps = 1e-;
int n,m; struct Max_Flow{
int cnt,fir[maxn],fron[maxn];
int tot,to[maxm],nxt[maxm];
double cap[maxm];queue<int>q;
int dis[maxn],gap[maxn],path[maxn];
void Init(int tot_=){
memset(fir,,sizeof(fir));
memset(dis,,sizeof(dis));
memset(gap,,sizeof(gap));
cnt=;tot=tot_;
}
void add(int a,int b,double c){
nxt[++cnt]=fir[a];
fir[a]=cnt;
cap[cnt]=c;
to[cnt]=b;
} void addedge(int a,int b,double c){
add(a,b,c);
add(b,a,);
} bool BFS(int s,int t){
dis[t]=;q.push(t);
while(!q.empty()){
int x=q.front();q.pop();
for(int i=fir[x];i;i=nxt[i])
if(!dis[to[i]]){
dis[to[i]]=dis[x]+;
q.push(to[i]);
}
}
return dis[s];
} double Aug(int s,int t){
int p=t;double f=INF;
while(p!=s){
f=min(f,cap[path[p]]);
p=to[path[p]^];
}
p=t;
while(p!=s) {
cap[path[p]]-=f;
cap[path[p]^]+=f;
p=to[path[p]^];
}
return f;
} double ISAP(int s,int t){
if(!BFS(s,t));
for(int i=s;i<=t;i++)gap[dis[i]]+=;
for(int i=s;i<=t;i++)fron[i]=fir[i];
int p=s;double ret=;
while(dis[s]<=tot){
if(p==t){
ret+=Aug(s,t);
p=s;
}
int &ii=fron[p];
for(;ii;ii=nxt[ii])if(cap[ii])
if(dis[p]==dis[to[ii]]+)
break;
if(ii)
path[p=to[ii]]=ii;
else{
if(--gap[dis[p]]==)break;
int minn=tot+;
for(int i=fir[p];i;i=nxt[i])
if(cap[i]>eps)minn=min(minn,dis[to[i]]);
gap[dis[p]=minn+]+=;fron[p]=fir[p];
if(p!=s)p=to[path[p]^];
}
}
return ret;
}
}isap; int vis[maxn],ans;
void DFS(int x){
vis[x]=true;
if(x>=&&x<=n)ans+=;
for(int i=isap.fir[x];i;i=isap.nxt[i])
if(!vis[isap.to[i]]&&isap.cap[i]>eps)
DFS(isap.to[i]);
} int x1[maxm],y1[maxm];
void Build(double lam){
isap.Init(n+m+);
for(int i=;i<=m;i++){
int u=x1[i],v=y1[i];
isap.addedge(,n+i,1.0);
isap.addedge(n+i,u,INF);
isap.addedge(n+i,v,INF);
}
for(int i=;i<=n;i++)
isap.addedge(i,n+m+,lam);
} void Solve(){ int s=,t=n+m+;
double l=,r=m,lam;
while (r-l>=1.0/n/n){
lam=(l+r)/;Build(lam);
double ret=isap.ISAP(s,t);
if(1.0*m-ret<eps)r=lam;
else l=lam;
}
Build(l);isap.ISAP(s,t);
memset(vis,,sizeof(vis));
ans=;DFS(s);printf("%d\n",ans);
for (int i=;i<=n;i++)
if(vis[i])printf("%d\n", i);
} int main(){
while(scanf("%d%d",&n,&m)!=EOF){
for(int i=;i<=m;i++)
scanf("%d%d",&x1[i],&y1[i]);
if(!m){
printf("1\n1\n");
continue;
}
Solve();
}
return ;
}
网络流(最大密集度子图,分数规划):UvaLive 3709 Hard Life的更多相关文章
- 【BZOJ2285】[SDOI2011]保密(分数规划,网络流)
[BZOJ2285][SDOI2011]保密(分数规划,网络流) 题面 BZOJ 洛谷 题解 首先先读懂题目到底在干什么. 发现要求的是一个比值的最小值,二分这个最小值\(k\),把边权转换成\(t- ...
- 【BZOJ3232】圈地游戏(分数规划,网络流)
[BZOJ3232]圈地游戏(分数规划,网络流) 题面 BZOJ 题解 很神仙的一道题. 首先看到最大化的比值很容易想到分数规划.现在考虑分数规划之后怎么计算贡献. 首先每条边的贡献就变成了\(mid ...
- 【XSY2718】gift 分数规划 网络流
题目描述 有\(n\)个物品,买第\(i\)个物品要花费\(a_i\)元.还有\(m\)对关系:同时买\(p_i,q_i\)两个物品会获得\(b_i\)点收益. 设收益为\(B\),花费为\(A\), ...
- 【BZOJ4819】新生舞会(分数规划,网络流)
[BZOJ4819]新生舞会(分数规划,网络流) 题面 BZOJ Description 学校组织了一次新生舞会,Cathy作为经验丰富的老学姐,负责为同学们安排舞伴.有n个男生和n个女生参加舞会 买 ...
- 【BZOJ3597】方伯伯运椰子(分数规划,网络流)
[BZOJ3597]方伯伯运椰子(分数规划,网络流) 题解 给定了一个满流的费用流模型 如果要修改一条边,那么就必须满足流量平衡 也就是会修改一条某两点之间的路径上的所有边 同时还有另外一条路径会进行 ...
- [SCOI2018]游泳池(计算几何+分数规划+最大权闭合子图)
题目链接 https://www.luogu.org/problemnew/show/U56187 注:题面参考了网上的其他博客,并非原题题面,因此数据范围可能有误.数据为原创数据. 题解 其实就是许 ...
- bzoj 3232 圈地游戏——0/1分数规划(或网络流)
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3232 当然是0/1分数规划.但加的东西和减的东西不在一起,怎么办? 考虑把它们合在一起.因为 ...
- BZOJ2285 [SDOI2011]保密 【01分数规划 + 网络流】
题目 现在,保密成为一个很重要也很困难的问题.如果没有做好,后果是严重的.比如,有个人没有自己去修电脑,又没有拆硬盘,后来的事大家都知道了. 当然,对保密最需求的当然是军方,其次才是像那个人.为了应付 ...
- bzoj 3232 圈地游戏 —— 01分数规划+最小割建图(最大权闭合子图)
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3232 心烦意乱的时候调这道题真是...越调越气,就这样过了一晚上... 今天再认真看看,找出 ...
随机推荐
- 数据结构 : Hash Table
http://www.cnblogs.com/lucifer1982/archive/2008/06/18/1224319.html 作者:Angel Lucifer 引子 这篇仍然不讲并行/并发. ...
- JAVA 生成PDF报表()
许多应用程序都要求动态生成 PDF 文档.这些应用程序涵盖从生成客户对帐单并通过电子邮件交付的银行到购买特定的图书章节并以 PDF 格式接收这些图书章节的读者.这个列表不胜枚举.在本文中,我们将使用 ...
- vim字符串替换
vi/vim 中可以使用 :s 命令来替换字符串.以前只会使用一种格式来全文替换,今天发现该命令有很多种写法(vi 真是强大啊,还有很多需要学习),记录几种在此,方便以后查询. :s/vivian/s ...
- [原创] SQLite数据库使用清单(下)
上文两章对SQLite的功能.语法.和操作进行了介绍,本文讲解SQLite的一些高级语法和操作. 3.
- 系统重装c盘后,mysql重新设置
之前我的mysql装在d盘,重装了系统后,虽然只格式化了c盘,但mysql还是不能用了.我网上找了找.修改了一下配置. 1.首先设置环境变量,编辑path,在后面添加上mysql的安装路径 : 2.之 ...
- WINDOWS批处理命令使用大全
来源:http://www.942dn.com就是爱电脑网 WINDOWS批处理命令使用大全 批处理,也称为批处理脚本,英文译为BATCH,批处理文件后缀BAT就取的前三个字母.它的构成没有固定格式, ...
- 外部式css样式,写在单独的一个文件中
外部式css样式(也可称为外联式)就是把css代码写一个单独的外部文件中,这个css样式文件以“.css”为扩展名,在<head>内(不是在<style>标签内)使用<l ...
- QWidget QMainWindow QDialog 三者区别
Qt类是一个提供所需的像全局变量一样的大量不同的标识符的命名空间.通常情况下,你可以忽略这个类.QObject和一些其它类继承了它,所以在这个Qt命名空间中定义的所有标识符通常情况下都可以无限制的使用 ...
- golang bufio writer,reader 缓存规则
读,写,缓冲区可以杜绝频繁的读,写动作1.写缓存,如果一次write的长度大于buffer长度那么久发送当前缓冲区的内容并且发送要写入的内容,就是不在缓存了.如果发送的内容小于buffer长度,就按缓 ...
- jQuery 元素移除empty() remove()与detach()的区别?
@1.empty() 删除匹配元素集合中所有的后代字节点元素: <p>hello<span>world</span></p> $("p&quo ...