Hdu 4010-Query on The Trees LCT,动态树
Query on The Trees
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65768/65768 K (Java/Others)
Total Submission(s): 4091 Accepted Submission(s): 1774
There are N nodes, each node will have a unique weight Wi. We will have four kinds of operations on it and you should solve them efficiently. Wish you have fun!
For each case, the first line contains only one integer N.(1 ≤ N ≤ 300000) The next N‐1 lines each contains two integers x, y which means there is an edge between them. It also means we will give you one tree initially.
The next line will contains N integers which means the weight Wi of each node. (0 ≤ Wi ≤ 3000)
The next line will contains an integer Q. (1 ≤ Q ≤ 300000) The next Q lines will start with an integer 1, 2, 3 or 4 means the kind of this operation.
1. Given two integer x, y, you should make a new edge between these two node x and y. So after this operation, two trees will be connected to a new one.
2. Given two integer x, y, you should find the tree in the tree set who contain node x, and you should make the node x be the root of this tree, and then you should cut the edge between node y and its parent. So after this operation, a tree will be separate into two parts.
3. Given three integer w, x, y, for the x, y and all nodes between the path from x to y, you should increase their weight by w.
4. Given two integer x, y, you should check the node weights on the path between x and y, and you should output the maximum weight on it.
You should output a blank line after each test case.
1 2
2 4
2 5
1 3
1 2 3 4 5
6
4 2 3
2 1 2
4 2 3
1 3 5
3 2 1 4
4 1 4
-1
7
We define the illegal situation of different operations:
In first operation: if node x and y belong to a same tree, we think it's illegal.
In second operation: if x = y or x and y not belong to a same tree, we think it's illegal.
In third operation: if x and y not belong to a same tree, we think it's illegal.
In fourth operation: if x and y not belong to a same tree, we think it's illegal.
题解:
LCT的子树问题。
找到每个点所在的原始树(不是Splay树)的根。
又是子树判断最麻烦。。。
#include<bits/stdc++.h>
using namespace std;
#define MAXN 300010
#define INF 1e9
struct node
{
int left,right,val,mx;
}tree[MAXN];
struct NODE
{
int begin,end,next;
}edge[MAXN*];
int father[MAXN],rev[MAXN],tag[MAXN],U[MAXN],V[MAXN],Stack[MAXN],Head[MAXN],cnt;
void addedge(int bb,int ee)
{
edge[++cnt].begin=bb;edge[cnt].end=ee;edge[cnt].next=Head[bb];Head[bb]=cnt;
}
void addedge1(int bb,int ee)
{
addedge(bb,ee);addedge(ee,bb);
}
int read()
{
int s=,fh=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')fh=-;ch=getchar();}
while(ch>=''&&ch<=''){s=s*+(ch-'');ch=getchar();}
return s*fh;
}
int isroot(int x)
{
return tree[father[x]].left!=x&&tree[father[x]].right!=x;
}
void pushdown(int x)
{
int l=tree[x].left,r=tree[x].right;
if(rev[x]!=)
{
rev[x]^=;rev[l]^=;rev[r]^=;
swap(tree[x].left,tree[x].right);
}
if(tag[x]!=)
{
/*tag[l]+=tag[x];tag[r]+=tag[x];
tree[l].val+=tag[x];tree[r].val+=tag[x];
tree[l].mx+=tag[x];tree[r].mx+=tag[x];*/
if(l!=){tag[l]+=tag[x];tree[l].val+=tag[x];tree[l].mx+=tag[x];}
if(r!=){tag[r]+=tag[x];tree[r].val+=tag[x];tree[r].mx+=tag[x];}
tag[x]=;
}
}
void Pushup(int x)
{
int l=tree[x].left,r=tree[x].right;
tree[x].mx=max(max(tree[l].mx,tree[r].mx),tree[x].val);
}
void rotate(int x)
{
int y=father[x],z=father[y];
if(!isroot(y))
{
if(tree[z].left==y)tree[z].left=x;
else tree[z].right=x;
}
if(tree[y].left==x)
{
father[x]=z;father[y]=x;tree[y].left=tree[x].right;tree[x].right=y;father[tree[y].left]=y;
}
else
{
father[x]=z;father[y]=x;tree[y].right=tree[x].left;tree[x].left=y;father[tree[y].right]=y;
}
Pushup(y);Pushup(x);
}
void splay(int x)
{
int top=,i,y,z;Stack[++top]=x;
for(i=x;!isroot(i);i=father[i])Stack[++top]=father[i];
for(i=top;i>=;i--)pushdown(Stack[i]);
while(!isroot(x))
{
y=father[x];z=father[y];
if(!isroot(y))
{
if((tree[y].left==x)^(tree[z].left==y))rotate(x);
else rotate(y);
}
rotate(x);
}
}
void access(int x)
{
int last=;
while(x!=)
{
splay(x);
tree[x].right=last;Pushup(x);
last=x;x=father[x];
}
}
void makeroot(int x)
{
access(x);splay(x);rev[x]^=;
}
void link(int u,int v)
{
/*access(u);*/makeroot(u);father[u]=v;//splay(u);
}
void cut(int u,int v)
{
/*access(u);*/makeroot(u);access(v);splay(v);/*father[u]=tree[v].left=0;*/father[tree[v].left]=;tree[v].left=;Pushup(v);
}
int findroot(int x)
{
access(x);splay(x);
while(tree[x].left!=)x=tree[x].left;
return x;
}
int main()
{
int n,i,w,x,y,fh,Q,top=,u,j,v;
while(scanf("%d",&n)!=EOF)
{
top=;
for(i=;i<=n;i++)tree[i].val=tree[i].mx=tree[i].left=tree[i].right=rev[i]=tag[i]=father[i]=;
tree[].mx=-INF;
memset(Head,-,sizeof(Head));cnt=;
for(i=;i<n;i++)
{
U[i]=read();V[i]=read();
addedge1(U[i],V[i]);
}
Stack[++top]=;
for(i=;i<=top;i++)
{
u=Stack[i];
for(j=Head[u];j!=-;j=edge[j].next)
{
v=edge[j].end;
if(v!=father[u])
{
father[v]=u;
Stack[++top]=v;
}
}
}
for(i=;i<=n;i++)tree[i].mx=tree[i].val=read();
//for(i=1;i<n;i++)link(U[i],V[i]);
Q=read();
for(i=;i<=Q;i++)
{
fh=read();
if(fh==)
{
x=read();y=read();
if(findroot(x)!=findroot(y))link(x,y);
else {printf("-1\n");continue;}
}
else if(fh==)
{
x=read();y=read();
if(findroot(x)==findroot(y)&&x!=y)
{
/*makeroot(x);*/cut(x,y);
//access(y);access(father[y]);splay(father[y]);father[y]=tree[father[y]].left=0;
}
else {printf("-1\n");continue;}
}
else if(fh==)
{
w=read();x=read();y=read();
if(findroot(x)==findroot(y))
{
makeroot(x);access(y);splay(y);
tag[y]+=w;tree[y].mx+=w;tree[y].val+=w;
}
else {printf("-1\n");continue;}
}
else
{
x=read();y=read();
makeroot(x);access(y);splay(y);
if(findroot(x)!=findroot(y)){printf("-1\n");continue;}
printf("%d\n",tree[y].mx);
}
}
printf("\n");
}
return ;
}
Hdu 4010-Query on The Trees LCT,动态树的更多相关文章
- HDU 4010 Query on The Trees(动态树LCT)
Problem Description We have met so many problems on the tree, so today we will have a query problem ...
- HDU 4010 Query on The Trees(动态树)
题意 给定一棵 \(n\) 个节点的树,每个点有点权.完成 \(m\) 个操作,操作四两种,连接 \((x,y)\) :提 \(x\) 为根,并断 \(y\) 与它的父节点:增加路径 \((x,y)\ ...
- hdu 4010 Query on The Trees LCT
支持:1.添加边 x,y2.删边 x,y3.对于路径x,y上的所有节点的值加上w4.询问路径x,y上的所有节点的最大权值 分析:裸的lct...rev忘了清零死循环了两小时... 1:就是link操作 ...
- 动态树(LCT):HDU 4010 Query on The Trees
Query on The Trees Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65768/65768 K (Java/Othe ...
- HDU 4010 Query on The Trees (动态树)(Link-Cut-Tree)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4010 题意; 先给你一棵树,有 \(4\) 种操作: 1.如果 \(x\) 和 \(y\) 不在同一 ...
- HDU 4010.Query on The Trees 解题报告
题意: 给出一颗树,有4种操作: 1.如果x和y不在同一棵树上则在xy连边 2.如果x和y在同一棵树上并且x!=y则把x换为树根并把y和y的父亲分离 3.如果x和y在同一棵树上则x到y的路径上所有的点 ...
- HDOJ 4010 Query on The Trees LCT
LCT: 分割.合并子树,路径上全部点的点权添加一个值,查询路径上点权的最大值 Query on The Trees Time Limit: 10000/5000 MS (Java/Others) ...
- HDU 4010 Query on The Trees(动态树)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4010 题意:一棵树,四种操作: (1)若x和y不在一棵树上,将x和y连边: (2)若x和y在一棵树上, ...
- HDU 4010 Query on The Trees
Problem Description We have met so many problems on the tree, so today we will have a query problem ...
随机推荐
- ASP.NET Web API 通过参数控制返回类型(JSON|XML)
一个很实用的技巧,可以在访问web api服务的时候指定返回数据的格式类型,比如 json 或者 xml. 因为 web api 默认返回的是XML格式,但是现在json 比较流行,同时网上也有其他的 ...
- 3.SQL*Plus命令
3.1SQL*Plus与数据库的交互 主要用来数据库查询和数据处理的工具. 3.2SQL*Plus运行环境设置 3.2.1SET命令概述 用户可以使用SET命令设置SQL*Plus的运行环境,SET命 ...
- UVA10142/PC110108Australian Voting
UVA10142/PC110108Australian Voting 10142 Australian Voting Accepted C++11 0.769 2014-02-11 05:01:20 ...
- header("Location:login.php")
header("Location:login.php")应该注意的几个问题 header("Location:")作为php的转向语句.其实在使用中,他有几点 ...
- div section article aside的理解
div 是一个大的容器 内部可以包含header main nav aside footer等标签 没有语义,多用于为脚本添加样式 section的语义比div语义强些,用于主题性比较强的内容,比如一 ...
- 从一个标准 url 里取出文件的扩展名
在php预定义函数中有一个叫做"pathinfo()"的函数,专门用于返回文件路径信息的. 那好,我们就来看一下它能为我们做些什么? 语法:pathinfo($url_ ...
- Safari浏览器的调试
最近做浏览器兼容的时候发现Safari的脚本调试工具比较难找,因此与大家分享一下 1.找到脚本调试的选项 2.勾选此选项 3.在页面空白处右击打开调试窗口 4.看到下方的调试窗口了 细心的读者会发现, ...
- linux下安装MySQL5.6记录
把之前装的mysql卸载了,准备重新用代码包装一遍,问了一下公司的DBA,他推荐给我mysql-5.6.16版本,说这个版本比较稳定. 按照网上的教程安装,结果就少文件,我还在找原因的时候,同事来找我 ...
- mongodb常用命令【转】
mongodb由 C++编写,其名字来自humongous这个单词的中间部分,从名字可见其野心所在就是海量数据的处理.关于它的一个最简洁描述为:scalable, high-performance, ...
- Java IO学习总结
Java IO流学习总结 Io流的内容比较多 ,大致可以分为字节流和字符流,其中为了提高效率又用到了缓冲区. Java流操作有关的类或接口: 流的概念和作用 流是一组有顺序的,有起点和终点的字节集合, ...