洛谷P6075题解
首先这 \(n\) 个数是互相独立的,所以我们不需要统一的去考虑,只需要考虑其中一个数即可。
我们以 \(k=5\) 的情况举例。
我设 \(f_i\) 为最后一行只填前 \(i\) 个点的情况数, \(g_i\) 为 \(k=i\) 时总共的情况数。
显然, \(f_0\) 就是 \(g_{k-1}\) ,在这里就是 \(g_4\) 。

然后 \(f_1\) 其实就是图中黑色部分一定填,白色一定不填,红色部分可选的种类数。进一步观察,这个红色部分其实就是 \(g_3\) 。


再进一步由图可以得到, \(f_2=g_2,f_3=g_1\) 。
再往下, \(f_4\) 和 \(f_5\) 都没得选了,所以 \(f_4=f_5=1\) 。
为了下面讲述方便,我们设 \(f_4=g_0=1\) 。
那么我们已经得到了 \(g_5=\sum^5_{i=1}f_i\) ,那么我们可以推广到其他数,可知 \(g_k=\sum^k_{i=1}f_i\)
再进一步观察,当 \(k=5\) 时, \(f_0=g_4,f_1=g_3,f_2=g_2,f_3=g_1,f_4=g_0\) ,
所以 \(g_5=\sum^5_{i=1}f_i=\sum^4_{i=1}g_{4-i}+f_5=\sum^4_{i=1}g_i+1\) 。
推广到其他数,可知 \(g_k=\sum^{k-1}_{i=1}g_i+1\)
那么我们可以根据 \(g_0=1\) 推出 \(g_1=2,g_2=4,g_3=8\) 。
观察规律,可以发现 \(g_i=2^i\) 。
如何证明呢?我们使用数学归纳法。
首先当 \(i=0\) 时,\(g_0=1=2^0\) ,结论成立。
再假设 \(i=k\) 时,结论已成立,那么 \(g_{k+1}=\sum^{k}_{i=1}g_i+1=\sum^{k-1}_{i=1}g_i+1+g_k\) ,而 \(\sum^{k-1}_{i=1}g_i+1=g_k\) ,所以 \(g_{k+1}=\sum^{k-1}_{i=1}g_i+1+g_k=2\times g_k=2\times 2^k=2^{k+1}\) ,所以 \(i=k+1\) 时仍然成立。
所以我们就证明出了 \(g_i=2^i\) 。
回到最开始。我们有 \(n\) 个数,每个数有 \(g_k=2^k\) 种选择,那么根据乘法原理,总计的选择数就是 \(2^{nk}\) 。用快速幂算一下即可。代码就不贴了。
洛谷P6075题解的更多相关文章
- [洛谷P3376题解]网络流(最大流)的实现算法讲解与代码
[洛谷P3376题解]网络流(最大流)的实现算法讲解与代码 更坏的阅读体验 定义 对于给定的一个网络,有向图中每个的边权表示可以通过的最大流量.假设出发点S水流无限大,求水流到终点T后的最大流量. 起 ...
- 洛谷P5759题解
本文摘自本人洛谷博客,原文章地址:https://www.luogu.com.cn/blog/cjtb666anran/solution-p5759 \[这道题重在理解题意 \] 选手编号依次为: \ ...
- 关于三目运算符与if语句的效率与洛谷P2704题解
题目描述 司令部的将军们打算在N*M的网格地图上部署他们的炮兵部队.一个N*M的地图由N行M列组成,地图的每一格可能是山地(用“H” 表示),也可能是平原(用“P”表示),如下图.在每一格平原地形上最 ...
- c++并查集配合STL MAP的实现(洛谷P2814题解)
不会并查集的话请将此文与我以前写的并查集一同食用. 原题来自洛谷 原题 文字稿在此: 题目背景 现代的人对于本家族血统越来越感兴趣. 题目描述 给出充足的父子关系,请你编写程序找到某个人的最早的祖先. ...
- 洛谷P2607题解
想要深入学习树形DP,请点击我的博客. 本题的DP模型同 P1352 没有上司的舞会.本题的难点在于如何把基环树DP转化为普通的树上DP. 考虑断边和换根.先找到其中的一个环,在上面随意取两个点, 断 ...
- 洛谷 P6075 [JSOI2015]子集选取
链接:P6075 前言: 虽然其他大佬们的走分界线的方法比我巧妙多了,但还是提供一种思路. 题意: %&¥--@#直接看题面理解罢. 分析过程: 看到这样的题面我脑里第一反应就是DP,但是看到 ...
- 【洛谷】题解 P1056 【排座椅】
题目链接 因为题目说输入保证会交头接耳的同学前后相邻或者左右相邻,所以一对同学要分开有且只有一条唯一的通道才能把他们分开. 于是可以吧这条通道累加到一个数组里面.应为题目要求纵列的通道和横列的通道条数 ...
- 洛谷P3572题解
这道题实在是一道 毒瘤 题,太坑爹了.那个写 \(deque\) 的题解亲测只有80分,原因 不言而明 ,这道题居然 丧心病狂 到 卡STL . 好了,不吐槽了,进入正题 题目分析: 这是一道十分 简 ...
- [洛谷P1972][题解][SDOI2009]HH的项链
别碰我! 自己还是太蒟了…… 看了好久,最后抄参考题解打出来的…… 前面的可能影响后面的,所以按照询问右端点排序 这时候维护一个前缀和数组就可以了, 那么问题又来了,去重? 可以这样,从前往后枚举,如 ...
随机推荐
- Quartz任务调度(4)JobListener分版本超详细解析
JobListener 我们的jobListener实现类必须实现其以下方法: 方法 说明 getName() getName() 方法返回一个字符串用以说明 JobListener 的名称.对于注册 ...
- 怎样去除EXCEL中的重复行
工具/原料 安装了EXCEL2010的电脑一台 步骤/方法 假如我们的表格中有下图所示的一系列数据,可以看出其中有一些重复. 首先我们选中所有数据.可以先用鼠标点击"A1单元格&qu ...
- jmeter实际场景应用之测试上传excel文件
日常工作上测试的时候,会有一些场景是导入/上传文件.我们系统多是excel文件,这里就用excel文件为例,详述一下此次测试遇到的坑.最终结果是成功的,请看到最后! 1.获取接口的一些参数信息 先按F ...
- Longhorn 云原生容器分布式存储 - Python Client
内容来源于官方 Longhorn 1.1.2 英文技术手册. 系列 Longhorn 是什么? Longhorn 云原生容器分布式存储 - 设计架构和概念 Longhorn 云原生容器分布式存储 - ...
- MySQL基础2——常用命令
注意:MySQL在centos中安装的是5.7版本的,编辑MySQL时会有个报错,需要执行: set @@global.sql_mode='STRICT_TRANS_TABLES,NO_ZERO_IN ...
- k8s 存活探针,滚动更新
文章原文 存活探针 Kubelet使用liveness probe(存活探针)来确定何时重启容器.例如,当应用程序处于运行状态但无法做进一步操作,liveness探针将捕获到deadlock,重启处于 ...
- C#多线程开发-任务并行库04
你好,我是阿辉. 之前学习了线程池,知道了它有很多好处. 使用线程池可以使我们在减少并行度花销时节省操作系统资源.可认为线程池是一个抽象层,其向程序员隐藏了使用线程的细节,使我们可以专心处理程序逻辑, ...
- Sentry Web 性能监控 - Web Vitals
系列 1 分钟快速使用 Docker 上手最新版 Sentry-CLI - 创建版本 快速使用 Docker 上手 Sentry-CLI - 30 秒上手 Source Maps Sentry For ...
- linux常用查询命令
1 **系统** 2 # uname -a # 查看内核/操作系统/CPU信息 3 # head -n 1 /etc/issue # 查看操作系统版本 4 # cat /proc/cpuinfo # ...
- Java链表练习题小结
链表 链表(Linked List)是一种常见的基础数据结构,是一种线性表,但是并不会按线性的顺序存储数据,而是在每一个节点里存到下一个节点的指针(Pointer).一个链表节点至少包含一个 数据域和 ...