时间限制:1 秒 空间限制:131072 KB
 

定义一个区间的值为其众数出现的次数
现给出n个数,求将所有区间的值排序后,第K大的值为多少。

众数(统计学/数学名词)_百度百科

Input
第一行两个数n和k(1<=n<=100000,k<=n*(n-1)/2)
第二行n个数,0<=每个数<2^31
Output
一个数表示答案。
Input示例
4 2
1 2 3 2
Output示例
2
思路:二分答案t,统计众数出现次数大于等于t的区间有多少个。
枚举右端点R,计算左端点L最大为多少,使得区间[L,R]的值大于等于t,对于每个R他对答案贡献为L。
通过线性扫一遍找出每一个数的前面第t-1个与他相同的数字,记其位置为b[i],若不存在则为0。
若R增加,则[L,R+1]的值也必定大于等于t,所以新的L=max(L,b[R+1]),这样就可以找出每一个R对应的L,O(n)计算出答案。
总复杂度O(nlogn)
  1 #include<stdio.h>
2 #include<algorithm>
3 #include<iostream>
4 #include<string.h>
5 #include<queue>
6 #include<stack>
7 #include<map>
8 #include<math.h>
9 using namespace std;
10 typedef long long LL;
11 int id[100005];
12 int cnt[100005];
13 int cp[100005];
14 int str[100005];
15 LL tt[100005];
16 typedef struct pp
17 {
18 LL x;
19 int id;
20 } ss;
21 ss ans[100005];
22 LL check(int mid);
23 bool cmp(pp n,pp m)
24 {
25 return n.x<m.x;
26 }
27 LL n,m;
28 int main(void)
29 {
30 int i,j,k;
31 while(scanf("%lld %lld",&n,&m)!=EOF)
32 {
33 memset(cnt,0,sizeof(cnt));
34 for(i=1; i<=n; i++)
35 {
36 scanf("%lld",&ans[i].x);
37 ans[i].id=i;
38 }
39 LL nn=ans[1].x;
40 int mm=1;
41 sort(ans+1,ans+n+1,cmp);
42 for(i=1; i<=n; i++)
43 {
44 if(ans[i].x!=nn)
45 {
46 mm++;
47 nn=ans[i].x;
48 }
49 tt[ans[i].id]=mm;
50 }
51 for(i=1;i<=n;i++)
52 {
53 ans[i].x=tt[i];
54 }
55 int maxx=0;
56 for(i=1; i<=n; i++)
57 {
58 cnt[ans[i].x]++;
59 if(maxx<cnt[ans[i].x])
60 {
61 maxx=cnt[ans[i].x];
62 }
63 }
64 int l=1;
65 int ask=1;
66 int r=maxx;
67 while(l<=r)
68 {
69 int mid=(l+r)/2;
70 LL ak=check(mid);
71 LL cnt1=(n)*(n-1)/2;
72 if(ak>=m)
73 { ask=mid;
74 l=mid+1;
75 }
76 else
77 { r=mid-1;
78
79 }
80 }printf("%d\n",ask);
81 }
82 return 0;
83 }
84 LL check(int mid)
85 {
86 int i,j,k;
87 LL sum=0;
88 if(mid==1)
89 return n*(n-1)/2;
90 else
91 {
92 memset(id,0,sizeof(id));
93 memset(cnt,0,sizeof(cnt));
94 memset(str,0,sizeof(str));
95 cnt[ans[1].x]++;str[ans[1].x]=1;id[1]=0;
96 for(i=2; i<=n; i++)
97 {
98 cnt[ans[i].x]++;
99 if(cnt[ans[i].x]==1)
100 {
101 str[ans[i].x]=i;
102 id[i]=0;
103 }
104 else if(cnt[ans[i].x]==mid)
105 {
106 id[i]=str[ans[i].x];
107 }
108 else if(cnt[ans[i].x]<mid)
109 {
110 id[i]=0;
111 }
112 else if(cnt[ans[i].x]>mid)
113 {
114 while(cnt[ans[i].x]>mid)
115 {
116 str[ans[i].x]++;
117 if(ans[str[ans[i].x]].x==ans[i].x)
118 {
119 cnt[ans[i].x]--;
120 break;
121 }
122 }id[i]=str[ans[i].x];
123 }
124 }
125 int L=0;
126 LL sum=0;
127 for(i=1; i<=n; i++)
128 {
129 L=max(L,id[i]);
130 sum+=L;
131
132 }printf("\n");
133 return sum;
134 }
135 }

1686 第K大区间的更多相关文章

  1. 51nod 1686 第k大区间

    1686 第K大区间 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 定义一个区间的值为其众数出现的次数.现给出n个数,求将所有区间的值排序后,第K大的值为多少. ...

  2. 1686 第K大区间(尺取+二分)

    1686 第K大区间 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 定义一个区间的值为其众数出现的次数.现给出n个数,求将所有区间的值排序后,第K大的值为多少. ...

  3. 51nod 1686 第K大区间2

    1685 第K大区间2 定义一个区间的值为其众数出现的次数.现给出n个数,求将所有区间的值排序后,第K大的值为多少. 众数(统计学/数学名词)_百度百科 Input 第一行两个数n和k(1<=n ...

  4. 51NOD 1686 第K大区间 二分

    第k大区间   定义一个区间的值为其众数出现的次数.现给出n个数,求将所有区间的值排序后,第K大的值为多少. Input   第一行两个数n和k(1<=n<=100000,k<=n* ...

  5. 51Nod——T 1686 第K大区间

    https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1686 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 ...

  6. 51nod 1686 第K大区间【离散化+二分】

    题目链接: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1686 题意: 定义一个区间的值为其众数出现的次数. 现给出n ...

  7. 51Nod 1686 第K大区间(离散化+尺取法)

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1686 题意: 思路: 第K大值,所以可以考虑二分法,然后用尺取法去扫描, ...

  8. 【题解】51nod 1686第K大区间

    成功的秘诀,在于克服自己看题解的冲动……[笑哭].自己A掉这题还是灰常开心的~ 以及爱死 two - pointer ! two - pointer 大法是真的好哇……这个题目有上一题的经验:求第\( ...

  9. 51nod 1686 第K大区间 二分瞎搞

    题目: 定义一个区间的值为其众数出现的次数. 现给出n个数,求将所有区间的值排序后,第K大的值为多少. 题解: 答案明显单调,我们考虑二分答案. 转化为判定问题后我们需要观察到一个性质: 如果一个区间 ...

随机推荐

  1. Jumpserver堡垒机容器化部署

    JumpServer 是符合 4A 的专业运维安全审计系统. 前提条件 已部署docker Jumpserver 对外需要开放 80 443 和 2222 端口 服务器.数据库.redis 等依赖组件 ...

  2. 什么是 IP 地址 – 定义和解释

    IP 地址定义 IP 地址是一个唯一地址,用于标识互联网或本地网络上的设备.IP 代表"互联网协议",它是控制通过互联网或本地网络发送的数据格式的一组规则. 本质上,IP 地址是允 ...

  3. ORACLE 按逗号拆分字符串为多行

    with t as (select '1,2,3,10,11,12' a from dual) select substr(a, decode(level - 1, 0, 0, instr(a, ', ...

  4. AOP与IOC的概念

    AOP与IOC的概念(即spring的核心) a) IOC:Spring是开源框架,使用框架可以使我们减少工作量,提高工作效率并且它是分层结构,即相对应的层处理对应的业务逻辑,减少代码的耦合度.而sp ...

  5. 【Go】【Basic】MacOS上搭建GO开发环境

    1. GO下载 1.1. 下载地址:https://www.golangtc.com/download (需要科学上网) 1.1.1. PKG安装: 下载这个包:go1.9.2.darwin-amd6 ...

  6. Oracle常用函数(SQL语句)

    使用sql函数,您可以在一个select语句的查询当中,直接计算数据库资料的平均值.总数.最小值.最大值.总和.标准差.变异数等统计.使用recordset对象时,也可使用这些sql函数. sql函数 ...

  7. pandas读取csv文件中文乱码问题

    1.为什么会出现乱码问题,用什么方式编码就用什么方式解码,由于csv不是用的utf-8编码,故不能用它解码. 常用的编码方式有 utf-8,ISO-8859-1.GB18030等. 2.中文乱码原因: ...

  8. 阿里云发布CloudOps白皮书,ECS自动化运维套件新升级

    12月10 日,2021云上架构与运维峰会上,阿里云发布业界首部<云上自动化运维白皮书>(简称CloudOps白皮书),并在其中提出了CloudOps成熟度模型.同时,阿里云还宣布了ECS ...

  9. 关于python中显存回收的问题

    技术背景 笔者在执行一个Jax的任务中,又发现了一个奇怪的问题,就是明明只分配了很小的矩阵空间,但是在多次的任务执行之后,显存突然就爆了.而且此时已经按照Jax的官方说明配置了XLA_PYTHON_C ...

  10. 开发中的PR和MR

    GitLab的是Pull Request缩写.GitHub则是Merge Request也就是MR. 当项目下载后进行更改并提交,每次过程算一次PR,一般会加入管理员审核,通过才能合并到master主 ...