Jang E., Gu S. and Poole B. Categorical reparameterization with gumbel-softmax. In International Conference On Learning Representations (ICLR), 2017.

利用梯度反向传播训练网咯几乎是深度学习的不二法门, 但是这往往要求保证梯度的存在, 这在一定程度上限制了一些扩展. 比如在VAE中, 虽然当\(q_{\phi}(z|x)\)是一个正态分布的时候, 我们可以利用reparameterization来保证梯度存在, 即:

\[z = \mu + \sigma \cdot \epsilon, \quad \epsilon \sim \mathcal{N}(0, I).
\]

但是倘若中间变量是离散变量, 比如我们期望构建一个条件的VAE, 那么我们就没法用这种方式来解决了, 本文就提出了一个对离散分布的近似.

主要内容

Gumbel distribution

Gumbel distribution

由gumbel distribution的性质可以知道, 从离散分布中采样\([\pi_1, \cdots, \pi_k]\)等价于

\[z = \mathrm{one\_hot}(\arg \max_i [g_i + \log \pi_i]), \quad g_i \mathop{\sim}\limits^{i.i.d.} \mathrm{Gumbel}(0, 1), i=1,2, \cdots, k.
\]

又\(\arg \max\) 可的一个连续逼近为softmax, 即

\[y_i = \frac{\exp((g_i + \log \pi_i) / \tau)}{\sum_{j=1}^k \exp((g_j + \log \pi_j) / \tau)}, i=1,2\cdots, k.
\]

可以发现, 当\(\tau\)比较小的时候, Gumbel-Softmax分布的期望和离散分布的期望是一致的, 采样的情况也是相同的, 我们可以选择一个较小的\(\tau\)使得Gumbel-Softmax分布是离散分布的一个连续近似.

注: 作者偏爱先取一个较大的\(\tau\), 再退火至一个小的\(\tau=0.5\).

注: 作者在概率密度函数的推导过程中, 即公式(15)出有一个小错误, 应当是\(e^{-v}\)而非\(e^{x_k -v}\).

Categorical Reparameterization with Gumbel-Softmax的更多相关文章

  1. Training spiking neural networks for reinforcement learning

    郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! 原文链接:https://arxiv.org/pdf/2005.05941.pdf Contents: Abstract Introduc ...

  2. Texygen文本生成,交大计算机系14级的朱耀明

    文本生成哪家强?上交大提出基准测试新平台 Texygen 2018-02-12 13:11测评 新智元报道 来源:arxiv 编译:Marvin [新智元导读]上海交通大学.伦敦大学学院朱耀明, 卢思 ...

  3. (论文笔记Arxiv2021)Walk in the Cloud: Learning Curves for Point Clouds Shape Analysis

    目录 摘要 1.引言 2.相关工作 3.方法 3.1局部特征聚合的再思考 3.2 曲线分组 3.3 曲线聚合和CurveNet 4.实验 4.1 应用细节 4.2 基准 4.3 消融研究 5.总结 W ...

  4. Transformer模型详解

    2013年----word Embedding 2017年----Transformer 2018年----ELMo.Transformer-decoder.GPT-1.BERT 2019年----T ...

  5. Gumbel-Softmax Trick和Gumbel分布

      之前看MADDPG论文的时候,作者提到在离散的信息交流环境中,使用了Gumbel-Softmax estimator.于是去搜了一下,发现该技巧应用甚广,如深度学习中的各种GAN.强化学习中的A2 ...

  6. 基于Caffe的Large Margin Softmax Loss的实现(中)

    小喵的唠叨话:前一篇博客,我们做完了L-Softmax的准备工作.而这一章,我们开始进行前馈的研究. 小喵博客: http://miaoerduo.com 博客原文:  http://www.miao ...

  7. 基于Caffe的Large Margin Softmax Loss的实现(上)

    小喵的唠叨话:在写完上一次的博客之后,已经过去了2个月的时间,小喵在此期间,做了大量的实验工作,最终在使用的DeepID2的方法之后,取得了很不错的结果.这次呢,主要讲述一个比较新的论文中的方法,L- ...

  8. [Machine Learning] logistic函数和softmax函数

    简单总结一下机器学习最常见的两个函数,一个是logistic函数,另一个是softmax函数,若有不足之处,希望大家可以帮忙指正.本文首先分别介绍logistic函数和softmax函数的定义和应用, ...

  9. 前馈网络求导概论(一)·Softmax篇

    Softmax是啥? Hopfield网络的能量观点 1982年的Hopfiled网络首次将统计物理学的能量观点引入到神经网络中, 将神经网络的全局最小值求解,近似认为是求解热力学系统的能量最低点(最 ...

随机推荐

  1. day12 查找文件

    day12 查找文件 find命令:查找文件 find命令:在linux系统中,按照我们的要求去查询文件. 格式: find [查询的路径] [匹配模式] [匹配规则] 匹配模式: -name : 按 ...

  2. 大数据学习day20-----spark03-----RDD编程实战案例(1 计算订单分类成交金额,2 将订单信息关联分类信息,并将这些数据存入Hbase中,3 使用Spark读取日志文件,根据Ip地址,查询地址对应的位置信息

    1 RDD编程实战案例一 数据样例 字段说明: 其中cid中1代表手机,2代表家具,3代表服装 1.1 计算订单分类成交金额 需求:在给定的订单数据,根据订单的分类ID进行聚合,然后管理订单分类名称, ...

  3. 【leetcode】653. Two Sum IV - Input is a BST

    Given the root of a Binary Search Tree and a target number k, return true if there exist two element ...

  4. 创建Oracle数据库实例

    创建Oracle数据库实例 转自oracle数据库创建实例 数据库已经安装完成,可以正常登陆查看用户等操作. system用户只能用normal身份登陆em.除非你对它授予了sysdba的系统权限或者 ...

  5. docker创建tomcat容器无法正常访问

    记一次创建tomcat docker容器后访问是404,进入到tomcat docker容器后发现webapps是空的 1.挂载 docker run -v localConfigFile:/cont ...

  6. LVS nat模型+dr模型

    nat模型 在 rs1 和 rs2  安装httpd  并配置测试页,启动 [root@rs1 ~]# yum install httpd -y[root@rs1 ~]# echo "thi ...

  7. 2.7 Rust Structs

    A struct, or structure, is a custom data type that lets you name and package together multiple relat ...

  8. 3.使用Spring Data ElasticSearch操作ElasticSearch(5.6.8版本)

    1.引入maven坐标 <!--spring-data-elasticsearch--><dependency> <groupId>org.springframew ...

  9. shell脚本 比较mysql配置文件

    一.简介 源码地址 日期:2019/12/19 介绍:较两个mysql实例的配置是否一致,支持比较配置文件,也支持比较系统变量的值 效果图: 二.使用 适用:centos6+ 语言:中文 注意:无 下 ...

  10. 人工水母搜索算法—matlab代码

    clc clear foj = @ Sphere; Lb = -100; % 搜索空间下界 Ub = 100; % 搜索空间上界 N_iter = 1000; % 最大迭代次数 n_pop = 50; ...