POJ2118基础矩阵快速幂
题意:
an=Σ1<=i<=kan-ibi mod 10 000 for n >= k,题意看了好久才懂,有点蛋疼啊,
这个题目要是能看懂题意就简单了,先给你k,然后给你a0 a1 a2 a3 ..ak-1.
然后给你b1 b2 b3 b4 ..bk,然后给你一个i,让你输出ai的值,如果i < k直接输出输入时的ai就行,否则就按照他给的那个公式
an=Σ1<=i<=kan-ibi mod 10 000 for n >= k
比如k=3
那么 a3 = a2*b1 + a1*b2 + a0*b3
a4 = a3*b1 + a2*b2 + a1*b3
a5 = a4*b1 + a3*b2 + a2*b3
a6 = a5*b1 + a4*b2 + a3*b3
......
下面构造矩阵 ,这个矩阵是k*k的,也就是每次都是变的,但是有规律,最大是100*100
,拿k=3举例子
a3 a2 a1 0 0 b1 a2 a3 a4
1 0 b2
0 1 b3
这样就轻松构造这个矩阵了吧,要是k=4也一样
0 0 0 b1
1 0 0 b2
0 1 0 b3
0 0 1 b4
....
好啦就说这么多,最近在忙活写服务器玩,去写自己的服务器喽......
#include<stdio.h>
#include<string.h>
#define MOD 10000
typedef struct
{
int mat[110][110];
}M;
M matM(M a ,M b ,int n)
{
M c;
memset(c.mat ,0 ,sizeof(c.mat));
for(int k = 1 ;k <= n ;k ++)
for(int i = 1 ;i <= n ;i ++)
if(a.mat[i][k])
for(int j = 1 ;j <= n ;j ++)
c.mat[i][j] = (c.mat[i][j] + a.mat[i][k] * b.mat[k][j]) % MOD;
return c;
}
M qPowMat(M a ,int b ,int n)
{
M c;
memset(c.mat ,0 ,sizeof(c.mat));
for(int i = 1 ;i <= n ;i ++)
c.mat[i][i] = 1;
while(b)
{
if(b & 1) c = matM(c ,a ,n);
a = matM(a ,a ,n);
b >>= 1;
}
return c;
}
int main ()
{
int k ,n ,i ,j;
int A[105] ,B[105];
M star ,ans;
while(~scanf("%d" ,&k) && k)
{
for(i = 0 ;i < k ;i ++)
scanf("%d" ,&A[i]);
for(i = k ;i >= 1 ;i --)
scanf("%d" ,&B[i]);
scanf("%d" ,&n);
if(n < k)
{
printf("%d\n" ,A[n]);
continue;
}
memset(star.mat ,0 ,sizeof(star.mat));
for(i = 1 ;i < k ;i ++)
star.mat[i+1][i] = 1;
for(i = 1 ;i <= k ;i ++)
star.mat[i][k] = B[i];
ans = qPowMat(star ,n - k + 1 ,k);
int sum = 0;
for(i = 1 ;i <= k ;i ++)
sum = (sum + A[i-1] * ans.mat[i][k]) % MOD;
printf("%d\n" ,sum);
}
return 0;
}
POJ2118基础矩阵快速幂的更多相关文章
- lightoj 1096【矩阵快速幂(作为以后的模板)】
基础矩阵快速幂何必看题解 #include <bits/stdc++.h> using namespace std; /* 0 1 2 3 4 5 6 7 0 0 0 */ const i ...
- 2020牛客寒假算法基础集训营1 J. 缪斯的影响力 (矩阵快速幂/费马小定理降幂)
https://ac.nowcoder.com/acm/problem/200658 f(n) = f(n-1) * f(n-2) * ab ,f的第一项是x,第二项是y. 试着推出第三项是x·y·a ...
- 【66测试20161115】【树】【DP_LIS】【SPFA】【同余最短路】【递推】【矩阵快速幂】
还有3天,今天考试又崩了.状态还没有调整过来... 第一题:小L的二叉树 勤奋又善于思考的小L接触了信息学竞赛,开始的学习十分顺利.但是,小L对数据结构的掌握实在十分渣渣.所以,小L当时卡在了二叉树. ...
- HDU 2842 (递推+矩阵快速幂)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2842 题目大意:棒子上套环.第i个环能拿下的条件是:第i-1个环在棒子上,前i-2个环不在棒子上.每个 ...
- HDU4887_Endless Punishment_BSGS+矩阵快速幂+哈希表
2014多校第一题,当时几百个人交没人过,我也暴力交了几发,果然不行. 比完了去学习了BSGS才懂! 题目:http://acm.hdu.edu.cn/showproblem.php?pid=4887 ...
- poj 3070 Fibonacci(矩阵快速幂,简单)
题目 还是一道基础的矩阵快速幂. 具体的居者的幂公式我就不明示了. #include<stdio.h> #include<string.h> #include<algor ...
- hdu 2243 考研路茫茫——单词情结 ac自动机+矩阵快速幂
链接:http://acm.hdu.edu.cn/showproblem.php?pid=2243 题意:给定N(1<= N < 6)个长度不超过5的词根,问长度不超过L(L <23 ...
- 矩阵快速幂(入门) 学习笔记hdu1005, hdu1575, hdu1757
矩阵快速幂是基于普通的快速幂的一种扩展,如果不知道的快速幂的请参见http://www.cnblogs.com/Howe-Young/p/4097277.html.二进制这个东西太神奇了,好多优秀的算 ...
- hdu3306 Another kind of Fibonacci【矩阵快速幂】
转载请注明出处:http://www.cnblogs.com/KirisameMarisa/p/4187670.html 题目链接:http://acm.hdu.edu.cn/showproblem. ...
随机推荐
- Codeforces 682C Alyona and the Tree
题目链接:http://codeforces.com/problemset/problem/682/C 分析:存图,用dfs跑一遍,详细见注释 1 #include<iostream> 2 ...
- 大牛带你学会java类加载机制,不要错过,值得收藏!
很多人对java类加载机制都是非常抗拒的,因为这个太难理解了,但是我们作为一名优秀的java工程师,还是要把java类加载机制研究和学习明白的,因为这对于我们在以后的工作中有很大的帮助,因为它在jav ...
- 靶场练习-Sqli-labs通关记录(盲注)
0x00 实验环境 本地:Win 10 靶场:sqli-labs(共65关,每日一关) 0x02 通关记录 简介:一天一关! (5)第五关: 由于此处与前四关有明显的差别,故在此我 ...
- 鸿蒙应用程序Ability(能力)看这一篇就够
本节概述 什么是Ability Ability分类 Ability生命周期 Ability之间跳转 什么是Ability Ability意为能力,是HarmonyOS应用程序提供的抽象功能.在Andr ...
- 为什么要从 Linux 迁移到 BSD2
OpenZFS on Linux,是项目的 Linux 部分,目前有 345 个活跃的贡献者,有超过 5600 个提交,而且几乎每天都有提交!一些世界上最大的 CDN 和数据存储服务在 FreeBSD ...
- BeetleX使用bootstrap5开发SPA应用
在早期版本BeetleX.WebFamily只提供了vuejs+element的集成,由于element只适合PC管理应用开发相对于移动应用适配则没这么方便.在新版本组件集成了bootstra ...
- centos系统mysql忘记密码
安装 mysql 之后,注意添加软连接 mysql 忘记密码操作, vim /etc/my.cnf 在 [mysqld] 的段中加上一句:skip-grant-tables 重启 mysql 服务, ...
- 键盘--扫描码--ASCII码--显示器上的字符
在上一篇,我讲了键盘操作会产生扫描码以及如何解析Pause键和Print Screen键的扫描码. 在这一篇,我会说清楚"键盘上的输入为什么会出现在显示器上". 极简版 我们敲击键 ...
- Django之缓存、信号和图片验证码、ORM性能
一. 缓存 1. 介绍 缓存通俗来说:就是把数据先保存在某个地方,下次再读取的时候不用再去原位置读取,让访问速度更快. 缓存机制图解 2.Django中提供了6种缓存方式 1. 开发调试 2. 内存 ...
- python-for表达式
for表达式用于其他区间,元组,列表等可迭代对象创建新的列表 [表达式 for 循环计数器 in 可迭代对象] for表达式与普通for循环的区别有两点 在for关键字之前定义一个表达式,该表达式通常 ...