tensorflow1.12 queue 笔记
主要参考:https://www.tensorflow.org/api_guides/python/threading_and_queues#Queue_usage_overview
自动方式
For most use cases, the automatic thread startup and management provided by tf.train.MonitoredSession is sufficient. In the rare case that it is not, TensorFlow provides tools for manually managing your threads and queues.
与tf.read_file()、tf.image.decode_jpeg()、tfrecord API等函数配合,可以实现自动图片流并行读取
import tensorflow as tf def simple_shuffle_batch(source, capacity, batch_size=10):
# Create a random shuffle queue.
queue = tf.RandomShuffleQueue(capacity=capacity,
min_after_dequeue=int(0.9*capacity),
shapes=source.shape, dtypes=source.dtype) # Create an op to enqueue one item.
enqueue = queue.enqueue(source) # Create a queue runner that, when started, will launch 4 threads applying
# that enqueue op.
num_threads = 4
qr = tf.train.QueueRunner(queue, [enqueue] * num_threads) # Register the queue runner so it can be found and started by
# <a href="../../api_docs/python/tf/train/start_queue_runners"><code>tf.train.start_queue_runners</code></a> later (the threads are not launched yet).
tf.train.add_queue_runner(qr) # Create an op to dequeue a batch
return queue.dequeue_many(batch_size) # create a dataset that counts from 0 to 99
input = tf.constant(list(range(100)))
input = tf.data.Dataset.from_tensor_slices(input)
input = input.make_one_shot_iterator().get_next() # Create a slightly shuffled batch from the sorted elements
get_batch = simple_shuffle_batch(input, capacity=20) # `MonitoredSession` will start and manage the `QueueRunner` threads.
with tf.train.MonitoredSession() as sess:
# Since the `QueueRunners` have been started, data is available in the
# queue, so the `sess.run(get_batch)` call will not hang.
while not sess.should_stop():
print(sess.run(get_batch))
手动方式
通过官方例程微调(以便能正常运行)得到,目前能运行,结果也正确,但是运行警告,尚未解决。
WARNING:tensorflow:From /home/work/Downloads/python_scripts/tensorflow_example/test_tf_queue_manual.py:52: QueueRunner.__init__ (from tensorflow.python.training.queue_runner_impl) is deprecated and will be removed in a future version.
Instructions for updating:
To construct input pipelines, use the `tf.data` module.
import tensorflow as tf
# Using Python's threading library.
import threading
import time batch_size = 10
thread_num = 3 print("-" * 50)
def MyLoop(coord, id):
step = 0
while not coord.should_stop():
step += 1
print("thread id: %02d, step: %02d, ...do something..." %(id, step))
time.sleep(0.01)
if step >= 5:
coord.request_stop() # Main thread: create a coordinator.
coord = tf.train.Coordinator() # Create thread_num threads that run 'MyLoop()'
threads = [threading.Thread(target=MyLoop, args=(coord,i)) for i in range(thread_num)] # Start the threads and wait for all of them to stop.
for t in threads:
t.start()
coord.join(threads) print("-" * 50) # create a dataset that counts from 0 to 99
example = tf.constant(list(range(100)))
example = tf.data.Dataset.from_tensor_slices(example)
example = example.make_one_shot_iterator().get_next() # Create a queue, and an op that enqueues examples one at a time in the queue.
queue = tf.RandomShuffleQueue(capacity=20,
min_after_dequeue=int(0.9*20),
shapes=example.shape,
dtypes=example.dtype)
enqueue_op = queue.enqueue(example) # Create a training graph that starts by dequeueing a batch of examples.
inputs = queue.dequeue_many(batch_size)
train_op = inputs # ...use 'inputs' to build the training part of the graph... # Create a queue runner that will run thread_num threads in parallel to enqueue examples.
qr = tf.train.QueueRunner(queue, [enqueue_op] * thread_num) # Launch the graph.
sess = tf.Session()
# Create a coordinator, launch the queue runner threads.
coord = tf.train.Coordinator()
enqueue_threads = qr.create_threads(sess, coord=coord, start=True) # Run the training loop, controlling termination with the coordinator.
try:
for step in range(1000000):
if coord.should_stop():
break
y = sess.run(train_op)
print(step, ", y =", y)
except Exception as e:
# Report exceptions to the coordinator.
coord.request_stop(e)
finally:
# Terminate as usual. It is safe to call `coord.request_stop()` twice.
coord.request_stop()
coord.join(threads)
tensorflow1.12 queue 笔记的更多相关文章
- Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- 第十三章:计算着色器(The Compute Shader)
原文:Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- 第十三章:计算着色器(The Compute Shader) 代码工程 ...
- Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- 第七章:在Direct3D中绘制(二)
原文:Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- 第七章:在Direct3D中绘制(二) 代码工程地址: https:/ ...
- Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- 第四章:Direct 3D初始化
原文:Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- 第四章:Direct 3D初始化 学习目标 对Direct 3D编程在 ...
- 12.24笔记(关于//UIDynamic演练//多对象的附加行为//UIDynamic简单演练//UIDynamic//(CoreText框架)NSAttributedString)
12.24笔记1.UIDynamic注意点:演示代码:上面中设置视图旋转的时候,需要注意设置M_PI_4时,视图两边保持平衡状态,达不到仿真效果.需要偏移下角度.2.吸附行为3.推动行为初 ...
- 12.22笔记(关于CALayer//Attributes//CALayer绘制图层//CALayer代理绘图//CALayer动画属性//CALayer自定义子图层//绘图pdf文件//绘图渐变效果)
12.22笔记 pdf下载文件:https://www.evernote.com/shard/s227/sh/f81ba498-41aa-443b-81c1-9b569fcc34c5/f033b89a ...
- Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- 全书总结
原文:Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- 全书总结 本系列文章中可能有很多翻译有问题或者错误的地方:并且有些章节 ...
- Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- Direct12优化
原文:Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- Direct12优化 第一章:向量代数 1.向量计算的时候,使用XMV ...
- Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- 第二十三章:角色动画
原文:Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- 第二十三章:角色动画 学习目标 熟悉蒙皮动画的术语: 学习网格层级变换 ...
- Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- 第二十二章:四元数(QUATERNIONS)
原文:Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- 第二十二章:四元数(QUATERNIONS) 学习目标 回顾复数,以及 ...
随机推荐
- Linux核心目录结构
------------恢复内容开始------------ 目录 含义及作用 /usr/bin 普通用户二进制命令目录 /usr/sbin root管理员用户使用的二进制命令目录 /boot 内核程 ...
- tomcat日志及logback相关日志框架
一.重点问题整理 1.1 关于logback.xml中的路径设置问题 准备金系统的logback.xml中设置的路径是: <!-- 定义日志文件 输出位置 --> <property ...
- Mysql 基础用法
#创建表 CREATE TABLE table_name (column_name int) CREATE TABLE IF NOT EXISTS `runoob_tbl`( `runoob_id` ...
- odoo时间过滤
Odoo中本日.本月.上月过滤器实现方法 Odoo中本日.本月.上月过滤器实现方法<filter string="今日订单" name="today" ...
- (opencv10)膨胀和侵蚀(Dilation与Erosion)
(opencv10)膨胀和侵蚀(Dilation与Erosion) 图像形态学操作 图像形态学操作-基于形状的一系列图像处理操作的合集,主要是基于集合论基础上的形态学数学 形态学有四个基本操作:腐蚀, ...
- Python - 基础数据类型 dict 字典
字典简介 字典在 Python 里面是非常重要的数据类型,而且很常用 字典是以关键字(键)为索引,关键字(键)可以是任意不可变类型 字典由键和对应值成对组成,字典中所有的键值对放在 { } 中间,每一 ...
- Xshell 打开时,初始运行卡慢优化方法
我使用的是Xshell 6免费版,有需要的同学可以去这个地址下载:https://www.netsarang.com/download/down_form.html?code=622 一开始安装完Xs ...
- <题解>[SDOI2017]硬币游戏
solutions 题面(loj) 题面(luogu) 这个题吧是我很久很久以前留下的坑了,到了今天才补好.(是不是太菜了) 暴力 这个和之前的题解一样,确实可以用 trie 树,这复杂度是\(\ma ...
- 简明易懂,将细节隐藏,面向新手树立web开发概念——学完Java基础语法,超快速上手springboot+mybatiJavaWeb开发
简明易懂,将细节隐藏,面向新手树立web开发概念 --学完Java基础语法,超快速上手JavaWeb开发 Web本质(先忽视各种协议) Web应用可以理解为浏览器和服务器之间的交互. 我们可以看一个简 ...
- noip模拟测试10
T1 这道题在考场上想到了二维前缀和,就是自己算前缀和的方式有点麻烦,导致花的时间较长,但还是成功搞了出来. 因为暴力计算的话需要不停枚举左上角和右下角的 i ,j, 时间复杂度为 n^4 ,我当时就 ...