主要参考:https://www.tensorflow.org/api_guides/python/threading_and_queues#Queue_usage_overview

自动方式

For most use cases, the automatic thread startup and management provided by tf.train.MonitoredSession is sufficient. In the rare case that it is not, TensorFlow provides tools for manually managing your threads and queues.

与tf.read_file()、tf.image.decode_jpeg()、tfrecord API等函数配合,可以实现自动图片流并行读取

import tensorflow as tf

def simple_shuffle_batch(source, capacity, batch_size=10):
# Create a random shuffle queue.
queue = tf.RandomShuffleQueue(capacity=capacity,
min_after_dequeue=int(0.9*capacity),
shapes=source.shape, dtypes=source.dtype) # Create an op to enqueue one item.
enqueue = queue.enqueue(source) # Create a queue runner that, when started, will launch 4 threads applying
# that enqueue op.
num_threads = 4
qr = tf.train.QueueRunner(queue, [enqueue] * num_threads) # Register the queue runner so it can be found and started by
# <a href="../../api_docs/python/tf/train/start_queue_runners"><code>tf.train.start_queue_runners</code></a> later (the threads are not launched yet).
tf.train.add_queue_runner(qr) # Create an op to dequeue a batch
return queue.dequeue_many(batch_size) # create a dataset that counts from 0 to 99
input = tf.constant(list(range(100)))
input = tf.data.Dataset.from_tensor_slices(input)
input = input.make_one_shot_iterator().get_next() # Create a slightly shuffled batch from the sorted elements
get_batch = simple_shuffle_batch(input, capacity=20) # `MonitoredSession` will start and manage the `QueueRunner` threads.
with tf.train.MonitoredSession() as sess:
# Since the `QueueRunners` have been started, data is available in the
# queue, so the `sess.run(get_batch)` call will not hang.
while not sess.should_stop():
print(sess.run(get_batch))

手动方式

通过官方例程微调(以便能正常运行)得到,目前能运行,结果也正确,但是运行警告,尚未解决。

WARNING:tensorflow:From /home/work/Downloads/python_scripts/tensorflow_example/test_tf_queue_manual.py:52: QueueRunner.__init__ (from tensorflow.python.training.queue_runner_impl) is deprecated and will be removed in a future version.
Instructions for updating:
To construct input pipelines, use the `tf.data` module.

import tensorflow as tf
# Using Python's threading library.
import threading
import time batch_size = 10
thread_num = 3 print("-" * 50)
def MyLoop(coord, id):
step = 0
while not coord.should_stop():
step += 1
print("thread id: %02d, step: %02d, ...do something..." %(id, step))
time.sleep(0.01)
if step >= 5:
coord.request_stop() # Main thread: create a coordinator.
coord = tf.train.Coordinator() # Create thread_num threads that run 'MyLoop()'
threads = [threading.Thread(target=MyLoop, args=(coord,i)) for i in range(thread_num)] # Start the threads and wait for all of them to stop.
for t in threads:
t.start()
coord.join(threads) print("-" * 50) # create a dataset that counts from 0 to 99
example = tf.constant(list(range(100)))
example = tf.data.Dataset.from_tensor_slices(example)
example = example.make_one_shot_iterator().get_next() # Create a queue, and an op that enqueues examples one at a time in the queue.
queue = tf.RandomShuffleQueue(capacity=20,
min_after_dequeue=int(0.9*20),
shapes=example.shape,
dtypes=example.dtype)
enqueue_op = queue.enqueue(example) # Create a training graph that starts by dequeueing a batch of examples.
inputs = queue.dequeue_many(batch_size)
train_op = inputs # ...use 'inputs' to build the training part of the graph... # Create a queue runner that will run thread_num threads in parallel to enqueue examples.
qr = tf.train.QueueRunner(queue, [enqueue_op] * thread_num) # Launch the graph.
sess = tf.Session()
# Create a coordinator, launch the queue runner threads.
coord = tf.train.Coordinator()
enqueue_threads = qr.create_threads(sess, coord=coord, start=True) # Run the training loop, controlling termination with the coordinator.
try:
for step in range(1000000):
if coord.should_stop():
break
y = sess.run(train_op)
print(step, ", y =", y)
except Exception as e:
# Report exceptions to the coordinator.
coord.request_stop(e)
finally:
# Terminate as usual. It is safe to call `coord.request_stop()` twice.
coord.request_stop()
coord.join(threads)

tensorflow1.12 queue 笔记的更多相关文章

  1. Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- 第十三章:计算着色器(The Compute Shader)

    原文:Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- 第十三章:计算着色器(The Compute Shader) 代码工程 ...

  2. Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- 第七章:在Direct3D中绘制(二)

    原文:Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- 第七章:在Direct3D中绘制(二) 代码工程地址: https:/ ...

  3. Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- 第四章:Direct 3D初始化

    原文:Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- 第四章:Direct 3D初始化 学习目标 对Direct 3D编程在 ...

  4. 12.24笔记(关于//UIDynamic演练//多对象的附加行为//UIDynamic简单演练//UIDynamic//(CoreText框架)NSAttributedString)

          12.24笔记1.UIDynamic注意点:演示代码:上面中设置视图旋转的时候,需要注意设置M_PI_4时,视图两边保持平衡状态,达不到仿真效果.需要偏移下角度.2.吸附行为3.推动行为初 ...

  5. 12.22笔记(关于CALayer//Attributes//CALayer绘制图层//CALayer代理绘图//CALayer动画属性//CALayer自定义子图层//绘图pdf文件//绘图渐变效果)

    12.22笔记 pdf下载文件:https://www.evernote.com/shard/s227/sh/f81ba498-41aa-443b-81c1-9b569fcc34c5/f033b89a ...

  6. Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- 全书总结

    原文:Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- 全书总结 本系列文章中可能有很多翻译有问题或者错误的地方:并且有些章节 ...

  7. Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- Direct12优化

    原文:Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- Direct12优化 第一章:向量代数 1.向量计算的时候,使用XMV ...

  8. Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- 第二十三章:角色动画

    原文:Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- 第二十三章:角色动画 学习目标 熟悉蒙皮动画的术语: 学习网格层级变换 ...

  9. Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- 第二十二章:四元数(QUATERNIONS)

    原文:Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- 第二十二章:四元数(QUATERNIONS) 学习目标 回顾复数,以及 ...

随机推荐

  1. odoo14里面的用户登录log记录

    一.继承userlog,添加字段 # -*- coding: utf-8 -*- from odoo import models, fields, api from odoo.http import ...

  2. 使用adb如何批量给设备安装apk

    win系统 1.首先我们需要在本地建一个文件夹apks,然后把所要安装的apk放进去 2.打开dos窗口使用for循环进行安装即可(前提你的电脑已经连接上了设备,输入adb devices可查看) f ...

  3. jvm源码解读--06 Method 方法解析

    进入 // Methods bool has_final_method = false; AccessFlags promoted_flags; promoted_flags.set_flags(0) ...

  4. jvm源码解读--05 常量池 常量项的解析JVM_CONSTANT_Utf8

    当index=18的时候JVM_CONSTANT_Utf8 case JVM_CONSTANT_Utf8 : { cfs->guarantee_more(2, CHECK); // utf8_l ...

  5. 大数据学习(23)—— ZooKeeper实战

    本片介绍两方面内容,一方面是命令行操作,另一方面是Java调用API. ZooKeeper集群环境的搭建在Hadoop集群搭建里已经讲过了,这里不再赘述,本篇内容基于zk3.5.8. 这里补充一点,除 ...

  6. 微信JSSDK的使用步骤

    步骤一:绑定域名 先登录微信公众平台进入"公众号设置"的"功能设置"里填写"JS接口安全域名".(登录后可在"开发者中心" ...

  7. JS替换字符

    var msg='A|B|C|D|E|F|G'; 方式1: var newMsg=msg.replace("|",""); 方式2: ps:适用特殊字符 var ...

  8. 防火墙和SElinux简单配置

    1.查看防火墙状态 # firewall-cmd --state          &    #systemctl status  firewalld.service 2.停止与开启firew ...

  9. 2020Android高级开发面试题以及答案整理,持续更新中~

    本篇收录了一些大厂面试中经常会遇到的经典面试题,并且我做好了整理分类.虽然今年的金九银十已经过去了,但是可以为明年的金三银四做准备啊,相信每一个跳槽季都有很多的前端开发者蠢蠢欲动,通过对本篇知识的整理 ...

  10. windows的自动登录和隐藏用户

    Launch Regedit. #r -> regedit 1. Navigate to: HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT\Cu ...