tensorflow1.12 queue 笔记
主要参考:https://www.tensorflow.org/api_guides/python/threading_and_queues#Queue_usage_overview
自动方式
For most use cases, the automatic thread startup and management provided by tf.train.MonitoredSession is sufficient. In the rare case that it is not, TensorFlow provides tools for manually managing your threads and queues.
与tf.read_file()、tf.image.decode_jpeg()、tfrecord API等函数配合,可以实现自动图片流并行读取
import tensorflow as tf def simple_shuffle_batch(source, capacity, batch_size=10):
# Create a random shuffle queue.
queue = tf.RandomShuffleQueue(capacity=capacity,
min_after_dequeue=int(0.9*capacity),
shapes=source.shape, dtypes=source.dtype) # Create an op to enqueue one item.
enqueue = queue.enqueue(source) # Create a queue runner that, when started, will launch 4 threads applying
# that enqueue op.
num_threads = 4
qr = tf.train.QueueRunner(queue, [enqueue] * num_threads) # Register the queue runner so it can be found and started by
# <a href="../../api_docs/python/tf/train/start_queue_runners"><code>tf.train.start_queue_runners</code></a> later (the threads are not launched yet).
tf.train.add_queue_runner(qr) # Create an op to dequeue a batch
return queue.dequeue_many(batch_size) # create a dataset that counts from 0 to 99
input = tf.constant(list(range(100)))
input = tf.data.Dataset.from_tensor_slices(input)
input = input.make_one_shot_iterator().get_next() # Create a slightly shuffled batch from the sorted elements
get_batch = simple_shuffle_batch(input, capacity=20) # `MonitoredSession` will start and manage the `QueueRunner` threads.
with tf.train.MonitoredSession() as sess:
# Since the `QueueRunners` have been started, data is available in the
# queue, so the `sess.run(get_batch)` call will not hang.
while not sess.should_stop():
print(sess.run(get_batch))
手动方式
通过官方例程微调(以便能正常运行)得到,目前能运行,结果也正确,但是运行警告,尚未解决。
WARNING:tensorflow:From /home/work/Downloads/python_scripts/tensorflow_example/test_tf_queue_manual.py:52: QueueRunner.__init__ (from tensorflow.python.training.queue_runner_impl) is deprecated and will be removed in a future version.
Instructions for updating:
To construct input pipelines, use the `tf.data` module.
import tensorflow as tf
# Using Python's threading library.
import threading
import time batch_size = 10
thread_num = 3 print("-" * 50)
def MyLoop(coord, id):
step = 0
while not coord.should_stop():
step += 1
print("thread id: %02d, step: %02d, ...do something..." %(id, step))
time.sleep(0.01)
if step >= 5:
coord.request_stop() # Main thread: create a coordinator.
coord = tf.train.Coordinator() # Create thread_num threads that run 'MyLoop()'
threads = [threading.Thread(target=MyLoop, args=(coord,i)) for i in range(thread_num)] # Start the threads and wait for all of them to stop.
for t in threads:
t.start()
coord.join(threads) print("-" * 50) # create a dataset that counts from 0 to 99
example = tf.constant(list(range(100)))
example = tf.data.Dataset.from_tensor_slices(example)
example = example.make_one_shot_iterator().get_next() # Create a queue, and an op that enqueues examples one at a time in the queue.
queue = tf.RandomShuffleQueue(capacity=20,
min_after_dequeue=int(0.9*20),
shapes=example.shape,
dtypes=example.dtype)
enqueue_op = queue.enqueue(example) # Create a training graph that starts by dequeueing a batch of examples.
inputs = queue.dequeue_many(batch_size)
train_op = inputs # ...use 'inputs' to build the training part of the graph... # Create a queue runner that will run thread_num threads in parallel to enqueue examples.
qr = tf.train.QueueRunner(queue, [enqueue_op] * thread_num) # Launch the graph.
sess = tf.Session()
# Create a coordinator, launch the queue runner threads.
coord = tf.train.Coordinator()
enqueue_threads = qr.create_threads(sess, coord=coord, start=True) # Run the training loop, controlling termination with the coordinator.
try:
for step in range(1000000):
if coord.should_stop():
break
y = sess.run(train_op)
print(step, ", y =", y)
except Exception as e:
# Report exceptions to the coordinator.
coord.request_stop(e)
finally:
# Terminate as usual. It is safe to call `coord.request_stop()` twice.
coord.request_stop()
coord.join(threads)
tensorflow1.12 queue 笔记的更多相关文章
- Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- 第十三章:计算着色器(The Compute Shader)
原文:Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- 第十三章:计算着色器(The Compute Shader) 代码工程 ...
- Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- 第七章:在Direct3D中绘制(二)
原文:Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- 第七章:在Direct3D中绘制(二) 代码工程地址: https:/ ...
- Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- 第四章:Direct 3D初始化
原文:Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- 第四章:Direct 3D初始化 学习目标 对Direct 3D编程在 ...
- 12.24笔记(关于//UIDynamic演练//多对象的附加行为//UIDynamic简单演练//UIDynamic//(CoreText框架)NSAttributedString)
12.24笔记1.UIDynamic注意点:演示代码:上面中设置视图旋转的时候,需要注意设置M_PI_4时,视图两边保持平衡状态,达不到仿真效果.需要偏移下角度.2.吸附行为3.推动行为初 ...
- 12.22笔记(关于CALayer//Attributes//CALayer绘制图层//CALayer代理绘图//CALayer动画属性//CALayer自定义子图层//绘图pdf文件//绘图渐变效果)
12.22笔记 pdf下载文件:https://www.evernote.com/shard/s227/sh/f81ba498-41aa-443b-81c1-9b569fcc34c5/f033b89a ...
- Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- 全书总结
原文:Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- 全书总结 本系列文章中可能有很多翻译有问题或者错误的地方:并且有些章节 ...
- Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- Direct12优化
原文:Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- Direct12优化 第一章:向量代数 1.向量计算的时候,使用XMV ...
- Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- 第二十三章:角色动画
原文:Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- 第二十三章:角色动画 学习目标 熟悉蒙皮动画的术语: 学习网格层级变换 ...
- Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- 第二十二章:四元数(QUATERNIONS)
原文:Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- 第二十二章:四元数(QUATERNIONS) 学习目标 回顾复数,以及 ...
随机推荐
- POJ1456 Supermarket 题解
思维题. 关键在于如何想到用堆来维护贪心的策略. 首先肯定是卖出的利润越大的越好,但有可能当前这天选定了利润最大的很久才过期而利润第二大的第二天就过期,这时的策略就不优了. 所以我们必须动态改变策略, ...
- Redis内部阻塞式操作有哪些?
Redis实例在运行的时候,要和许多对象进行交互,这些不同的交互对象会有不同的操作.下面我们来看看,这些不同的交互对象以及相应的主要操作有哪些. 客户端:键值对的增删改查操作. 磁盘:生成RDB快照. ...
- nginx 的安装、优化、服务器集群
一.安装 下载地址:http://nginx.org 找到 stable 稳定版 安装准备:nginx 依赖于pcre(正则)库,如果没有安装pcre先安装 yum install pcre pcr ...
- Docker未授权漏洞(2375)
漏洞验证 直接使用浏览器访问 http://ip:2335 http://ip:2335/version http://ip:2335/info docker -H tcp://ip:2375 ver ...
- ES6新特征
1.块级作用域 { } 就是块级作用域,还包括if.else.for.while...下都属于块级作用域. let 声明的变量不存在变量的提升,不允许let反复声明同一个变量:块级作用域下let ...
- 小白的 Python 修炼手册:入门篇
Life is short, you need Python.(人生苦短,我用 Python.) --Bruce Eckel 前言 听说现在是全民 Python 的时代,虽然不知道事实如何,但学会 P ...
- 使用 Assimp 库加载 3D 模型
前言 要想让自己的 3D 之旅多一点乐趣,肯定得想办法找一些有意思一点的 3D 模型.3D 模型有各种各样的格式,obj的,stl的,fbx的等等不一而足.特别是 obj 格式的 3D 模型,完全是纯 ...
- Java 17 将要发布,补一下 Java 13 中的新功能
本文章属于Java 新特性教程 系列,已经收录在 Github.com/niumoo/JavaNotes ,点个赞,不迷路. 自从 Oracle 调整了 Java 的版本发布节奏之后,Java 版本发 ...
- linux中的dhcp
目录 一.DHCP服务 二.DHCP的租约过程 三.使用DHCP动态配置主机地址 四.安装DHCP服务器 一.DHCP服务 ① DHCP (Dynamic HostConfiguration Prot ...
- git从远程仓库里拉取一条本地不存在的分支
查看远程分支和本地分支 git branch -va 当我想从远程仓库里拉取一条本地不存在的分支时: git checkout -b 本地分支名 origin/远程分支名 例如: 切换远程分支 git ...