题目链接

BZOJ2150

题解

复习:

带上下界网络流两种写法:

  1. 不建\(T->S\)的\(INF\)的边,即不考虑源汇点,先求出此时超级源汇的最大流,即无源汇下最大的自我调整,再加入该边,求超级源汇最大流增加的流量
  2. 先求出【或观察出】\(S->T\)的最大流,记为\(tot\),然后撤销流量,再建立\(T->S\),求出超级源汇最大流\(f\),答案为\(tot - f\)

两者本质一样,但后者在\(S->T\)最大流确定的情况下,可以增加效率

#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<vector>
#include<queue>
#include<cmath>
#include<map>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define cls(s,v) memset(s,v,sizeof(s))
#define mp(a,b) make_pair<int,int>(a,b)
#define cp pair<int,int>
using namespace std;
const int maxn = 5005,maxm = 3000005,INF = 0x3f3f3f3f;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = 0; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 1) + (out << 3) + c - 48; c = getchar();}
return flag ? out : -out;
}
char sq[55];
int X[] = {1,1},Y[] = {-1,1};
int N,M,R,C,id[55][55],tot;
int S,T,q[maxn],head,tail,cur[maxn];
int now,used[maxn],vis[maxn],d[maxn];
int h[maxn],ne = 1;
struct EDGE{int to,nxt,f;}ed[maxm];
inline void build(int u,int v,int f){
ed[++ne] = (EDGE){v,h[u],f}; h[u] = ne;
ed[++ne] = (EDGE){u,h[v],0}; h[v] = ne;
}
bool bfs(int S,int T){
q[head = tail = 0] = S; vis[S] = ++now;
int u;
while (head <= tail){
u = q[head++];
Redge(u) if (ed[k].f && vis[to = ed[k].to] != now){
d[to] = d[u] + 1;
vis[to] = now;
q[++tail] = to;
if (to == T) return true;
}
}
return false;
}
int dfs(int u,int minf,int T){
if (u == T || !minf) return minf;
int f,flow = 0,to;
if (used[u] != now) used[u] = now,cur[u] = h[u];
for (int& k = cur[u]; k; k = ed[k].nxt)
if (vis[to = ed[k].to] == now && d[to] == d[u] + 1 && (f = dfs(to,min(minf,ed[k].f),T))){
ed[k].f -= f; ed[k ^ 1].f += f;
flow += f; minf -= f;
if (!minf) break;
}
return flow;
}
int main(){
N = read(); M = read(); R = read(); C = read();
REP(i,N){
scanf("%s",sq + 1);
REP(j,M) if (sq[j] == '.') id[i][j] = ++tot;
}
S = (tot << 1) + 1; T = S + 1;
REP(i,N) REP(j,M){
if (!id[i][j]) continue;
int x,y,u = id[i][j];
build(S,u + tot,1); build(u,T,1);
for (int k = 0; k < 2; k++){
x = i + X[k] * R;
y = j + Y[k] * C;
if (x < 1 || y < 1 || x > N || y > M || !id[x][y]) continue;
build(u + tot,id[x][y],1);
}
if (R != C){
for (int k = 0; k < 2; k++){
x = i + X[k] * C;
y = j + Y[k] * R;
if (x < 1 || y < 1 || x > N || y > M || !id[x][y]) continue;
build(u + tot,id[x][y],1);
}
}
}
int ans = tot;
while (bfs(S,T)) ans -= dfs(S,INF,T);
printf("%d\n",ans);
return 0;
}

BZOJ2150 部落战争 【带上下界最小流】的更多相关文章

  1. 【bzoj2150】部落战争 有上下界最小流

    题目描述 lanzerb的部落在A国的上部,他们不满天寒地冻的环境,于是准备向A国的下部征战来获得更大的领土. A国是一个M*N的矩阵,其中某些地方是城镇,某些地方是高山深涧无人居住.lanzerb把 ...

  2. BZOJ_2502_清理雪道_有源汇上下界最小流

    BZOJ_2502_清理雪道_有源汇上下界最小流 Description        滑雪场坐落在FJ省西北部的若干座山上. 从空中鸟瞰,滑雪场可以看作一个有向无环图,每条弧代表一个斜坡(即雪道), ...

  3. BZOJ 2502 清理雪道(有源汇上下界最小流)

    题面 滑雪场坐落在FJ省西北部的若干座山上. 从空中鸟瞰,滑雪场可以看作一个有向无环图,每条弧代表一个斜坡(即雪道),弧的方向代表斜坡下降的方向. 你的团队负责每周定时清理雪道.你们拥有一架直升飞机, ...

  4. sgu 176 Flow construction(有源汇的上下界最小流)

    [题目链接] http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=11025 [模型] 有源汇点的上下界最小流.即既满足上下界又满足 ...

  5. 【Loj117】有源汇上下界最小流(网络流)

    [Loj117]有源汇上下界最小流(网络流) 题面 Loj 题解 还是模板题. #include<iostream> #include<cstdio> #include< ...

  6. SGU 176 Flow construction (有源有汇有上下界最小流)

    题意:给定 n 个点,m 条有向边,如果有向边的标号是1的话,就表示该边的上界下界都为容量 ,如果有向边的标号为0的哈,表示该边的下界为0,上界为容量 ,现在问,从 1 到 n 的最小流是多少,并输出 ...

  7. loj #117. 有源汇有上下界最小流

    题目链接 有源汇有上下界最小流,->上下界网络流 注意细节,边数组也要算上后加到SS,TT边. #include<cstdio> #include<algorithm> ...

  8. LOJ.117.[模板]有源汇有上下界最小流(Dinic)

    题目链接 有源汇有上下界最小流 Sol1. 首先和无源汇网络流一样建图,求SS->TT最大流: 然后连边(T->S,[0,INF]),再求一遍SS->TT最大流,答案为新添加边的流量 ...

  9. BZOJ1458:士兵占领(有上下界最小流)

    Description 有一个M * N的棋盘,有的格子是障碍.现在你要选择一些格子来放置一些士兵,一个格子里最多可以放置一个士兵,障碍格里不能放置士兵.我们称这些士兵占领了整个棋盘当满足第i行至少放 ...

随机推荐

  1. supervisord监控服务必备命令

    supervisord(http://supervisord.org/introduction.html)是一个非常优秀的进程管理工具,使用Python开发.它可以在类UNIX系统的方式让用户来准确地 ...

  2. Webpack 2 视频教程 007 - 配置 WDS 进行浏览器自动刷新

    原文发表于我的技术博客 这是我免费发布的高质量超清「Webpack 2 视频教程」. Webpack 作为目前前端开发必备的框架,Webpack 发布了 2.0 版本,此视频就是基于 2.0 的版本讲 ...

  3. Spring RPC 入门学习(1)-HelloWorld入门

    Spring搭建RPC环境 第一,下载所需要的jar包,下载地址:https://yunpan.cn/cPErQeANrSMyB (提取码:63e5),见下图: 第二,新建动态WebProject,把 ...

  4. 对象&内置对象& 对象构造 &JSON&__proto__和prototype

    原型是一个对象,其他对象可以通过它实现属性继承 原型链:每个对象都会在其内部初始化一个属性,就是__proto__,当我们访问一个对象的属性 时,如果这个对象内部不存在这个属性,那么他就会去__pro ...

  5. 期末总结:LINUX内核分析与设计期末总结

    朱国庆原创作品转载请注明出处<Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 一,心得体会 关于网上听课这 ...

  6. springboot整合fastJson遇到重定向问题

    通过网上教程使用springboot整合fastJson后遇到页面重定向问题(使用的springboot版本是2.0.2.RELEASE ,其他的版本可能不会出现以下问题),如下图: 我的项目结构如下 ...

  7. Leetcode——171.宝石与石头

    水题: 给定字符串J 代表石头中宝石的类型,和字符串 S代表你拥有的石头. S 中每个字符代表了一种你拥有的石头的类型,你想知道你拥有的石头中有多少是宝石. J 中的字母不重复,J 和 S中的所有字符 ...

  8. Practice2 结对子之“小学四则运算”

    开发环境:Eclipse,js,css,html 程序完成的方向: 1.可以出表达式里含有负整数(负整数最小不小于-100)的题目,且负数需要带括号,用户输入的结果不用带括号.如: 2*(-4) = ...

  9. 最新一课 老师指点用Listview适配器

    上课前 <?xml version="1.0" encoding="utf-8"?>    <ScrollView xmlns:android ...

  10. 接口(interface)与多态

    1. 接口(interface)是抽象方法与常量值的集合: 2. 从本质上来讲,接口是一种特殊的抽象类,这种抽象类中只包含常量与方法的定义,而没有变量和方法的实现: 3. 接口中声明的属性默认为:pu ...